CPP-GMR Performance of Electrochemically Synthesized Co/Cu Multilayered Nanowire Arrays with Extremely Large Aspect Ratio

被引:14
作者
Kamimura, Himeyo [1 ]
Hayashida, Masamitsu [2 ]
Ohgai, Takeshi [2 ]
机构
[1] Nagasaki Univ, Grad Sch Engn, Bunkyo Machi 1-14, Nagasaki 8528521, Japan
[2] Nagasaki Univ, Fac Engn, Bunkyo Machi 1-14, Nagasaki 8528521, Japan
基金
日本学术振兴会;
关键词
electrodeposition; multilayer; nanowire; cobalt; copper; anodization; nanochannel; magnetization; magnetoresistance; CPP-GMR; MAGNETIZATION REVERSAL; NICKEL; MAGNETORESISTANCE; FABRICATION; ELECTRODEPOSITION; ALUMINUM;
D O I
10.3390/nano10010005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anodized aluminum oxide (AAO) films, which have numerous nanochannels ca. 75 nm in diameter, D and ca. 70 mu m in length, L (ca. 933 in aspect ratio, L/D), were used as a template material for growing Co/Cu multilayered nanowire arrays. The multilayered nanowires with alternating Cu layer and Co layers were synthesized by using an electrochemical pulsed-potential deposition technique. The thickness of the Cu layer was adjusted from ca. 2 to 4 nm while that of the Co layer was regulated from ca. 13 to 51 nm by controlling the pulsed potential parameters. To get a Co/Cu multilayered nanowire in an electrochemical in-situ contact with a sputter-deposited Au thin layer, the pulsed potential deposition was continued up to ca. 5000 cycles until the nanowire reached out toward the surface of AAO template. Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) effect reached up to ca. 23.5% at room temperature in Co/Cu multilayered nanowires with ca. 3500 Co/Cu bilayers (Cu: 1.4 nm and Co: 18.8 nm). When decreasing the thickness of Co layer, the CPP-GMR value increased due to the Valet-Fert model in the long spin diffusion limit.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] Magnetization reversal of antiferromagnetically coupled (Co/Ni) and (Co/Pt) multilayers
    Al Subhi, A.
    Sbiaa, R.
    Ranjbar, M.
    Akerman, J.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 479 : 27 - 31
  • [2] ANALYSIS OF GALVANOSTATIC TRANSIENTS AND APPLICATION TO THE IRON ELECTRODE REACTION
    BOCKRIS, JOM
    KITA, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1961, 108 (07) : 676 - 685
  • [3] Creating magnetic field sensors from GMR nanowire networks
    Cox, Bryan
    Davis, Despina
    Crews, Niel
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2013, 203 : 335 - 340
  • [4] Electrodeposited, GMR CoNiFeCu Nanowires and Nanotubes from Electrolytes Maintained at Different Temperatures
    Davis, D.
    Zamanpour, M.
    Moldovan, M.
    Young, D.
    Podlaha, E. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) : D317 - D322
  • [5] Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes
    Evans, PR
    Yi, G
    Schwarzacher, W
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (04) : 481 - 483
  • [6] Magnetization processes in nickel and cobalt electrodeposited nanowires
    Ferre, R
    Ounadjela, K
    George, JM
    Piraux, L
    Dubois, S
    [J]. PHYSICAL REVIEW B, 1997, 56 (21) : 14066 - 14075
  • [7] Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes
    Kim, Dong-Joo
    Seol, Jin-Kyeong
    Lee, Mi-Ri
    Hyung, Jung-Hwan
    Kim, Gil-Sung
    Ohgai, Takeshi
    Lee, Sang-Kwon
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (16)
  • [8] Fast fabrication of long-range ordered porous alumina membranes by hard anodization
    Lee, Woo
    Ji, Ran
    Goesele, Ulrich
    Nielsch, Kornelius
    [J]. NATURE MATERIALS, 2006, 5 (09) : 741 - 747
  • [9] Lithographically patterned nanowire electrodeposition
    Menke, E. J.
    Thompson, M. A.
    Xiang, C.
    Yang, L. C.
    Penner, R. M.
    [J]. NATURE MATERIALS, 2006, 5 (11) : 914 - 919
  • [10] Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique
    Neetzel, C.
    Ohgai, T.
    Yanai, T.
    Nakano, M.
    Fukunaga, H.
    [J]. NANOSCALE RESEARCH LETTERS, 2017, 12