Bargmann Transform on the Space of Hyperplanes

被引:1
作者
Chihara, Hiroyuki [1 ]
机构
[1] Univ Ryukyus, Coll Educ, Nishihara, Okinawa 9030213, Japan
关键词
Radon transform; Bargmann transform; Fourier integral operator; Analytic wave front set; TOMOGRAPHY;
D O I
10.1007/s00041-022-09967-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an integral transform on the space of hyperplanes applying the Plancherel formula of the Radon transform to the definition of the semiclassical Bargmann transform on the Euclidean space. This is similar to the semiclassical Bargmann transform and some basic facts on microlocal analysis are also discussed.
引用
收藏
页数:21
相关论文
共 12 条
[1]  
[Anonymous], 1977, Mathematical Surveys and Monographs
[2]  
[Anonymous], 1983, Grundlehren Math. Wiss
[3]   Bounded Berezin-Toeplitz Operators on the Segal-Bargmann Space [J].
Chihara, Hiroyuki .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (03) :321-335
[4]  
Helgason S, 2011, INTEGRAL GEOMETRY AND RADON TRANSFORMS, P1, DOI 10.1007/978-1-4419-6055-9
[5]  
Hitrik M., 2013, ALGEBRAIC ANALYTIC M, P483
[6]  
Krishnan V. P., 2015, Handbook of Mathematical Methods in Imaging, V1, P847
[7]  
Martinez A., 2002, UNIVERSITEXT
[8]   QUANTITATIVE ANALYSIS OF METAL ARTIFACTS IN X-RAY TOMOGRAPHY [J].
Palacios, Benjamin ;
Uhlmann, Gunther ;
Wang, Yiran .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :4914-4936
[9]  
Quinto ET, 2006, PROC SYM AP, V63, P1