Selective synthesis of CuO/C nanocomposites and porous CuO based on polyacrylic acid hydrogel system as high-performance anode for lithium-ion batteries

被引:15
作者
Wang, Fei [1 ]
Cheng, Danfei [1 ]
Cheng, Tingting [1 ]
Zong, Jingui [1 ]
Long, Yixuan [1 ]
Zhao, Mingshu [1 ]
Yang, Sen [1 ]
Song, Xiaoping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, State Key Lab Mech Behav Mat,Key Lab Shaanxi Adv, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Copper oxide; Nanocomposites; Hydrogel; Anodes; Lithium ion batteries; BINDER-FREE ANODE; CARBON NANOTUBES; COPPER-OXIDE; COMPOSITE; STORAGE; OXIDATION;
D O I
10.1016/j.chemphys.2018.11.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CuO/C nanocomposites and porous CuO were selectively synthesized by a facile, low-cost and large-scale synthesis method based on polyacrylic acid hydrogel system. As the anode materials for lithium-ion batteries, the capacity of porous CuO is higher than CuO/C nanocomposites, while gradually decreases after 40 cycles due to the lack of supporting matrix. In CuO/C nanocomposites, CuO nanoparticles are uniformly embedded in the three-dimensional carbon matrix, which can buffer the large volume change, suppress the particle pulverization, and prevent the particle agglomeration of CuO nanoparticles. The capacity of CuO/C nanocomposites maintains at about 690 mAh g(-1) till 200th cycle.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 42 条
[1]   One-pot synthesis of a composite of monodispersed CuO nanospheres on carbon nanotubes as anode material for lithium-ion batteries [J].
Abbas, Syed Mustansar ;
Hussain, Syed Tajammul ;
Ali, Saqib ;
Abbas, Faisal ;
Ahmad, Nisar ;
Ali, Nisar ;
Khan, Yaqoob .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 574 :221-226
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries [J].
Cao, F. ;
Xia, X. H. ;
Pan, G. X. ;
Chen, J. ;
Zhang, Y. J. .
ELECTROCHIMICA ACTA, 2015, 178 :574-579
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode [J].
Cho, Sanghun ;
Ahn, Yong-keon ;
Yin, Zhenxing ;
You, Duck-Jae ;
Kim, Hyunjin ;
Piao, Yuanzhe ;
Yoo, Jeeyoung ;
Kim, Youn Sang .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (48) :11629-11635
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes:: A review [J].
Fan, Hong Jin ;
Goesele, Ulrich ;
Zacharias, Margit .
SMALL, 2007, 3 (10) :1660-1671
[8]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[9]   Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection [J].
Gao, Yang ;
Wei, Zhao ;
Li, Fei ;
Yang, Zhi Mao ;
Chen, Yong Mei ;
Zrinyi, Miklos ;
Osada, Yoshihito .
GREEN CHEMISTRY, 2014, 16 (03) :1255-1261
[10]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397