Learning spatiotemporal chaos using next-generation reservoir computing

被引:27
作者
Barbosa, Wendson A. S. [1 ]
Gauthier, Daniel J. [1 ,2 ]
机构
[1] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA
[2] ResCon Technol LLC, POB 21229, Columbus, OH 43221 USA
关键词
PREDICTION;
D O I
10.1063/5.0098707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time 10(3)-10(4) times faster for training process and training data set similar to 10(2) times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of similar to 10. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 32 条
[1]  
Platt JA, 2022, Arxiv, DOI arXiv:2201.08910
[2]   Machine Learning: Deepest Learning as Statistical Data Assimilation Problems [J].
Abarbanel, Henry D., I ;
Rozdeba, Paul J. ;
Shirman, Sasha .
NEURAL COMPUTATION, 2018, 30 (08) :2025-2055
[3]   A Hybrid Approach to Atmospheric Modeling That Combines Machine Learning With a Physics-Based Numerical Model [J].
Arcomano, Troy ;
Szunyogh, Istvan ;
Wikner, Alexander ;
Pathak, Jaideep ;
Hunt, Brian R. ;
Ott, Edward .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (03)
[4]   Symmetry-aware reservoir computing [J].
Barbosa, Wendson A. S. ;
Griffith, Aaron ;
Rowlands, Graham E. ;
Govia, Luke C. G. ;
Ribeill, Guilhem J. ;
Nguyen, Minh-Hai ;
Ohki, Thomas A. ;
Gauthier, Daniel J. .
PHYSICAL REVIEW E, 2021, 104 (04)
[6]   Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5 [J].
Chattopadhyay, Ashesh ;
Mustafa, Mustafa ;
Hassanzadeh, Pedram ;
Bach, Eviatar ;
Kashinath, Karthik .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (05) :2221-2237
[7]   Data-Driven Super-Parameterization Using Deep Learning: Experimentation With Multiscale Lorenz 96 Systems and Transfer Learning [J].
Chattopadhyay, Ashesh ;
Subel, Adam ;
Hassanzadeh, Pedram .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (11)
[8]   Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network [J].
Chattopadhyay, Ashesh ;
Hassanzadeh, Pedram ;
Subramanian, Devika .
NONLINEAR PROCESSES IN GEOPHYSICS, 2020, 27 (03) :373-389
[9]   Long-term prediction of chaotic systems with machine learning [J].
Fan, Huawei ;
Jiang, Junjie ;
Zhang, Chun ;
Wang, Xingang ;
Lai, Ying-Cheng .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[10]   Lattice Gauge Equivariant Convolutional Neural Networks [J].
Favoni, Matteo ;
Ipp, Andreas ;
Mueller, David I. ;
Schuh, Daniel .
PHYSICAL REVIEW LETTERS, 2022, 128 (03)