A GENERALIZATION OF GREENBERG'S L-INVARIANT

被引:37
作者
Benois, Denis [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
关键词
ADIC L-FUNCTIONS; IWASAWA THEORY; REPRESENTATIONS; VALUES; CONJECTURES; COHOMOLOGY; FAMILIES; FORMS; BIRCH; (PHI;
D O I
10.1353/ajm.2011.0043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the theory of (phi, Gamma)-modules we generalize Greenberg's construction of the L-invariant to p-adic representations which are semistable at p. This allows us to formulate a quite general conjecture about the behavior of p-adic L-functions at trivial zeros.
引用
收藏
页码:1573 / 1632
页数:60
相关论文
共 66 条
[41]  
Hida H., 2008, COMMUNICATION 0730
[42]  
Jannsen U., 1990, P S PURE MATH, V1400
[43]  
Kato K, 2004, ASTERISQUE, P117
[44]  
Katz N.M., 1994, Motives, I, V55, P21
[45]   CONSEQUENCES OF RIEMANN HYPOTHESIS FOR VARIETIES OVER FINITE-FIELDS [J].
KATZ, NM ;
MESSING, W .
INVENTIONES MATHEMATICAE, 1974, 23 (01) :73-77
[46]  
Kedlaya K., 2009, Journal de theorie des nombres de Bordeaux, V21, P285
[47]   A p-adic local monodromy theorem [J].
Kedlaya, KS .
ANNALS OF MATHEMATICS, 2004, 160 (01) :93-184
[48]  
Liu Ruochuan, 2008, INT MATH RES NOTICES, P32
[49]  
Manin Y. I., 1963, RUSS MATH SURV, V18, P1, DOI DOI 10.1070/RM1963V018N06ABEH001142
[50]  
Mazur, 1994, CONT MATH, P1