A GENERALIZATION OF GREENBERG'S L-INVARIANT

被引:36
作者
Benois, Denis [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
关键词
ADIC L-FUNCTIONS; IWASAWA THEORY; REPRESENTATIONS; VALUES; CONJECTURES; COHOMOLOGY; FAMILIES; FORMS; BIRCH; (PHI;
D O I
10.1353/ajm.2011.0043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the theory of (phi, Gamma)-modules we generalize Greenberg's construction of the L-invariant to p-adic representations which are semistable at p. This allows us to formulate a quite general conjecture about the behavior of p-adic L-functions at trivial zeros.
引用
收藏
页码:1573 / 1632
页数:60
相关论文
共 66 条
  • [1] Amice Y., 1975, Distributions p-adiques associees aux series de Hecke, Journees Arithmetiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, V24-25, P119
  • [2] [Anonymous], 1994, P S PURE MATH
  • [3] [Anonymous], 1973, Mat. Sb. (N.S.)
  • [4] [Anonymous], 2005, ALGEBRA NUMBER THEOR
  • [5] Bellaische J., 2009, ASTERISQUE, pxii+314
  • [6] On Iwasawa theory of crystalline representations
    Benois, D
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 104 (02) : 211 - 267
  • [7] BENOIS D, 2009, TRIVIAL ZEROS PERRIN
  • [8] Benois D, 2008, COMMENT MATH HELV, V83, P603
  • [9] Benois Denis, 2010, DOC MATH, P5
  • [10] Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202