ATP-Triggered Conformational Changes Delineate Substrate-Binding and -Folding Mechanics of the GroEL Chaperonin

被引:138
作者
Clare, Daniel K. [1 ]
Vasishtan, Daven [1 ]
Stagg, Scott [2 ]
Quispe, Joel [2 ]
Farr, George W. [4 ,5 ]
Topf, Maya [1 ]
Horwich, Arthur L. [3 ,4 ,5 ]
Saibil, Helen R. [1 ]
机构
[1] Univ London Birkbeck Coll, Crystallog & Inst Struct & Mol Biol, London WC1E 7HX, England
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[4] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06510 USA
[5] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 美国国家卫生研究院;
关键词
2.8 ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; ALLOSTERIC TRANSITIONS; ELECTRON-MICROSCOPY; KINETIC-ANALYSIS; FOLDED PROTEIN; CENTRAL CAVITY; UCSF CHIMERA; OPEN RING; POLYPEPTIDE;
D O I
10.1016/j.cell.2012.02.047
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100 degrees domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 61 条
[1]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[2]   CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION [J].
BRAIG, K ;
ADAMS, PD ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1083-1094
[3]  
Brocchieri L, 2000, PROTEIN SCI, V9, P476
[4]   Release of both native and non-native proteins from a cis-only GroEL ternary complex [J].
Burston, SG ;
Weissman, JS ;
Farr, GW ;
Fenton, WA ;
Horwich, AL .
NATURE, 1996, 383 (6595) :96-99
[5]   Exploring the structural dynamics of the E-coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states [J].
Chaudhry, C ;
Horwich, AL ;
Brunger, AT ;
Adams, PD .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 342 (01) :229-245
[6]   Role of the γ-phosphate of ATP in triggering protein folding by GroEL-GroES:: function, structure and energetics [J].
Chaudhry, C ;
Farr, GW ;
Todd, MJ ;
Rye, HS ;
Brunger, AT ;
Adams, PD ;
Horwich, AL ;
Sigler, PB .
EMBO JOURNAL, 2003, 22 (19) :4877-4887
[7]   Chaperonin complex with a newly folded protein encapsulated in the folding chamber [J].
Clare, D. K. ;
Bakkes, P. J. ;
van Heerikhuizen, H. ;
van der Vies, S. M. ;
Saibil, H. R. .
NATURE, 2009, 457 (7225) :107-U113
[8]   Multiple states of a nucleotide-bound group 2 chaperonin [J].
Clare, Daniel K. ;
Stagg, Scott ;
Quispe, Joel ;
Farr, George W. ;
Horwich, Arthur L. ;
Saibil, Helen R. .
STRUCTURE, 2008, 16 (04) :528-534
[9]   Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE [J].
Cliff, Matthew J. ;
Limpkin, Claire ;
Cameron, Angus ;
Burston, Steven G. ;
Clarke, Anthony R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (30) :21266-21275
[10]   A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL [J].
Cliff, MJ ;
Kad, NM ;
Hay, N ;
Lund, PA ;
Webb, MR ;
Burston, SG ;
Clarke, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (03) :667-684