Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

被引:57
作者
Stransky, Pavel [1 ]
Macek, Michal [1 ,2 ]
Leviatan, Amiram [3 ]
Cejnar, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic
[2] Yale Univ, Ctr Theoret Phys, Sloane Phys Lab, New Haven, CT 06520 USA
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Quantum phase transitions; Finite-size effects; Oscillatory component of level density; Regular/chaotic dynamics; DYNAMICS; ORBITS; NUCLEI; CHAOS;
D O I
10.1016/j.aop.2015.02.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article extends our previous analysis Stransky et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:57 / 82
页数:26
相关论文
共 20 条
[1]  
[Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
[2]  
[Anonymous], 1991, QUANTUM SIGNATURES C
[3]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[4]   Comparative quantum and semiclassical analysis of atom-field systems. I. Density of states and excited-state quantum phase transitions [J].
Bastarrachea-Magnani, M. A. ;
Lerma-Hernandez, S. ;
Hirsch, J. G. .
PHYSICAL REVIEW A, 2014, 89 (03)
[5]   Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity [J].
Bastarrachea-Magnani, M. A. ;
Lerma-Hernandez, S. ;
Hirsch, J. G. .
PHYSICAL REVIEW A, 2014, 89 (03)
[6]   SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS [J].
BERRY, MV ;
MOUNT, KE .
REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) :315-+
[7]   CLOSED ORBITS AND REGULAR BOUND SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1656) :101-123
[8]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135
[9]   Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei [J].
Cejnar, Pavel ;
Macek, Michal ;
Heinze, Stefan ;
Jolie, Jan ;
Dobes, Jan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31) :L515-L521
[10]   Understanding Chaos via Nuclei [J].
Cejnar, Pavel ;
Stransky, Pavel .
LATIN-AMERICAN SCHOOL OF PHYSICS MARCOS MOSHINSKY ELAF: NONLINEAR DYNAMICS IN HAMILTONIAN SYSTEMS, 2014, 1575 :23-49