Large-Time Behavior for Compressible Navier-Stokes-Fourier System in the Whole Space

被引:2
作者
He, Lingbing [1 ]
Wang, Chao [2 ]
Huang, Jingchi [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
GLOBAL EXISTENCE; WELL-POSEDNESS; EQUATIONS; MOTION; DENSITY; FLOWS;
D O I
10.1007/s00021-022-00673-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current paper is devoted to the investigation of large-time behavior of the compressible Navier-Stokes-Fourier system in the whole space. Under the condition that parallel to rho parallel to C-alpha and parallel to rho, T parallel to L-infinity possess uniform in time bound, we prove that the regular solutions converge to equilibrium with the optimal decay rate.
引用
收藏
页数:26
相关论文
共 28 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[2]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[3]   On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (04) :1375-1402
[4]  
Chen QL, 2010, REV MAT IBEROAM, V26, P915
[5]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[6]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[7]   On the uniqueness in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (01) :111-128
[8]   Global existence in critical spaces for flows of compressible viscous and heat-conductive gases [J].
Danchin, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 160 (01) :1-39
[9]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[10]   Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical L p Framework [J].
Danchin, Raphael ;
Xu, Jiang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :53-90