Particle flow superpositional GLMB filter

被引:5
作者
Saucan, Augustin-Alexandru [1 ]
Li, Yunpeng [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, 3480 Univ St, Montreal, PQ, Canada
来源
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVI | 2017年 / 10200卷
关键词
random finite sets; delta-GLMB filter; particle filter; particle flow; track before detect; superpositional model; TRACKER;
D O I
10.1117/12.2263236
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we propose a Superpositional Marginalized delta-GLMB (SM delta-GLMB) filter for multi-target tracking and we provide bootstrap and particle flow particle filter implementations. Particle filter implementations of the marginalized delta-GLMB filter are computationally demanding. As a first contribution we show that for the specific case of superpositional observation models, a reduced complexity update step can be achieved by employing a superpositional change of variables. The resulting SM delta-GLMB filter can be readily implemented using the unscented Kalman filter or particle filtering methods. As a second contribution, we employ particle flow to produce a measurement-driven importance distribution that serves as a proposal in the SM delta-GLMB particle filter. In high-dimensional state systems or for highly-informative observations the generic particle filter often suffers from weight degeneracy or otherwise requires a prohibitively large number of particles. Particle flow avoids particle weight degeneracy by guiding particles to regions where the posterior is significant. Numerical simulations showcase the reduced complexity and improved performance of the bootstrap SM delta-GLMB filter with respect to the bootstrap M delta-GLMB filter. The particle flow SM delta-GLMB filter further improves the accuracy of track estimates for highly informative measurements.
引用
收藏
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2004, P IEEE
[2]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[3]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[4]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[5]   The Probabilistic Data Association Filter ESTIMATION IN THE PRESENCE OF MEASUREMENT ORIGIN UNCERTAINTY [J].
Bar-Shalom, Yaakov ;
Daum, Fred ;
Huang, Jim .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (06) :82-100
[6]   Exact particle flow for nonlinear filters [J].
Daum, Fred ;
Huang, Jim ;
Noushin, Arjang .
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIX, 2010, 7697
[7]  
Ding T, 2012, 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P257, DOI 10.1109/SSP.2012.6319675
[8]   The GM-CPHD Tracker Applied to Real and Realistic Multistatic Sonar Data Sets [J].
Georgescu, Ramona ;
Willett, Peter .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2012, 37 (02) :220-235
[9]   The Multiple Model CPHD Tracker [J].
Georgescu, Ramona ;
Willett, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) :1741-1751
[10]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113