Powers of complete intersections: Graded betti numbers and applications

被引:29
作者
Guardo, E
Van Tuyl, A
机构
[1] Dipartimento Matemat & Informat, I-95100 Catania, Italy
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
关键词
D O I
10.1215/ijm/1258138318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I = (F-1,...,F-r) be a homogeneous ideal of the ring R = k[x(0),..., x(n)] generated by a regular sequence of type (d(1),...,d(r)). We give an elementary proof for an explicit description of the graded Betti numbers of I-s for any s >= 1. These numbers depend only upon the type and s. We then use this description to: (1) write H-R/Is, the Hilbert function of R/I-s, in terms of H-R/I; (2) verify that the k-algebra R/I-s satisfies a conjecture of Herzog-Huneke-Srinivasan; and (3) obtain information about the numerical invariants associated to sets of fat points in PI whose support is a complete intersection or a complete intersection minus a point.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 19 条
[1]  
AUSINA CB, HILBERT SERIES DETER
[2]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[3]   GENERIC FREE RESOLUTIONS AND A FAMILY OF GENERICALLY PERFECT IDEALS [J].
BUCHSBAUM, DA ;
EISENBUD, D .
ADVANCES IN MATHEMATICS, 1975, 18 (03) :245-301
[4]  
BUCKLES M, 2001, MATEMATICHE CATANIA, V55, P169
[5]  
BUCKLES M, 2001, MATEMATICHE CATANIA, V55, P191
[6]  
*COCOA TEAM, COCOA SYST DOING COM
[7]   Hilbert function of powers of ideals of low codimension [J].
Conca, A ;
Valla, G .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (04) :753-784
[8]   IDEALS DEFINED BY MATRICES AND A CERTAIN COMPLEX ASSOCIATED WITH THEM [J].
EAGON, JA ;
NORTHCOTT, DG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1337) :188-&
[9]   PROJECTIVELY NORMAL BUT SUPERABUNDANT EMBEDDINGS OF RATIONAL SURFACES IN PROJECTIVE-SPACE [J].
GERAMITA, AV ;
GIMIGLIANO, A ;
HARBOURNE, B .
JOURNAL OF ALGEBRA, 1994, 169 (03) :791-804
[10]   CAYLEY-BACHARACH SCHEMES AND THEIR CANONICAL MODULES [J].
GERAMITA, AV ;
KREUZER, M ;
ROBBIANO, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (01) :163-189