Lightweight image super-resolution with multiscale residual attention network

被引:0
|
作者
Xiao, Cunjun [1 ]
Dong, Hui [1 ]
Li, Haibin [1 ]
Li, Yaqian [1 ]
Zhang, Wenming [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
single-image super-resolution; attention mechanism; multiscale features; residual learning; QUALITY ASSESSMENT;
D O I
10.1117/1.JEI.31.4.043028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, various convolutional neural networks have successfully applied to single-image super-resolution task. However, most existing models with deeper or wider networks require heavy computation and memory consumption that restrict them in practice. To solve the above questions, we propose a lightweight multiscale residual attention network, which not merely can extract more detail to improve the quality of the image but also decrease the usage of the parameters. More specifically, a multiscale residual attention block (MRAB) as the basic unit can fully exploit the image features with different sizes of convolutional kernels. Meanwhile, the attention mechanism can be adaptive to recalibrate channel and spatial information of feature mappings. Furthermore, a local information integration module (LFIM) is designed as the network architecture to maximize the use of local information. The LFIM consists of several MRAB and a local skip connection to complement information loss. Our experimental results show that our method is superior to the representative algorithms in performance with fewer parameters and computational overhead.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Deep recurrent residual channel attention network for single image super-resolution
    Yepeng Liu
    Dezhi Yang
    Fan Zhang
    Qingsong Xie
    Caiming Zhang
    The Visual Computer, 2024, 40 : 3441 - 3456
  • [42] Closed-Loop Residual Attention Network for Single Image Super-Resolution
    Zhu, Meng
    Luo, Wenjie
    ELECTRONICS, 2022, 11 (07)
  • [43] Single-Image Super-Resolution Reconstruction Aggregating Residual Attention Network
    Peng Yanfei
    Zhang Manting
    Zhang Pingjia
    Li Jian
    Gu Lirui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [44] RESIDUAL ATTENTION NETWORK FOR WAVELET DOMAIN SUPER-RESOLUTION
    Liu, Jing
    Xie, Yuan
    Song, Haichuan
    Yuan, Wang
    Ma, Lizhuang
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2033 - 2037
  • [45] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123
  • [46] Lightweight Inverse Separable Residual Information Distillation Network for Image Super-Resolution Reconstruction
    Zhao X.
    Li X.
    Song Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (05): : 419 - 432
  • [47] Lightweight Attended Multi-Scale Residual Network for Single Image Super-Resolution
    Yan, Yitong
    Xu, Xue
    Chen, Wenhui
    Peng, Xinyi
    IEEE ACCESS, 2021, 9 (09): : 52202 - 52212
  • [48] A Multi-Branch Feature Extraction Residual Network for Lightweight Image Super-Resolution
    Liu, Chunying
    Wan, Xujie
    Gao, Guangwei
    MATHEMATICS, 2024, 12 (17)
  • [49] Multi-Residual Feature Fusion Network for lightweight Single Image Super-Resolution
    Qin, Jiayi
    He, Zheng
    Yan, Binyu
    Jeon, Gwanggil
    Yang, Xiaomin
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1511 - 1518
  • [50] Multiscale Recursive Feedback Network for Image Super-Resolution
    Chen, Xiao
    Sun, Chaowen
    IEEE ACCESS, 2022, 10 : 6393 - 6406