Lightweight image super-resolution with multiscale residual attention network

被引:0
作者
Xiao, Cunjun [1 ]
Dong, Hui [1 ]
Li, Haibin [1 ]
Li, Yaqian [1 ]
Zhang, Wenming [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
single-image super-resolution; attention mechanism; multiscale features; residual learning; QUALITY ASSESSMENT;
D O I
10.1117/1.JEI.31.4.043028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, various convolutional neural networks have successfully applied to single-image super-resolution task. However, most existing models with deeper or wider networks require heavy computation and memory consumption that restrict them in practice. To solve the above questions, we propose a lightweight multiscale residual attention network, which not merely can extract more detail to improve the quality of the image but also decrease the usage of the parameters. More specifically, a multiscale residual attention block (MRAB) as the basic unit can fully exploit the image features with different sizes of convolutional kernels. Meanwhile, the attention mechanism can be adaptive to recalibrate channel and spatial information of feature mappings. Furthermore, a local information integration module (LFIM) is designed as the network architecture to maximize the use of local information. The LFIM consists of several MRAB and a local skip connection to complement information loss. Our experimental results show that our method is superior to the representative algorithms in performance with fewer parameters and computational overhead.
引用
收藏
页数:19
相关论文
共 51 条
[11]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[12]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[13]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[14]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[15]  
Huang JB, 2015, PROC CVPR IEEE, P5197, DOI 10.1109/CVPR.2015.7299156
[16]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]
[17]   Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior [J].
Kim, Kwang In ;
Kwon, Younghee .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (06) :1127-1133
[18]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[19]   Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution [J].
Lai, Wei-Sheng ;
Huang, Jia-Bin ;
Ahuja, Narendra ;
Yang, Ming-Hsuan .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5835-5843
[20]   Learning with Privileged Information for Efficient Image Super-Resolution [J].
Lee, Wonkyung ;
Lee, Junghyup ;
Kim, Dohyung ;
Ham, Bumsub .
COMPUTER VISION - ECCV 2020, PT XXIV, 2020, 12369 :465-482