Lightweight image super-resolution with multiscale residual attention network

被引:0
作者
Xiao, Cunjun [1 ]
Dong, Hui [1 ]
Li, Haibin [1 ]
Li, Yaqian [1 ]
Zhang, Wenming [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
single-image super-resolution; attention mechanism; multiscale features; residual learning; QUALITY ASSESSMENT;
D O I
10.1117/1.JEI.31.4.043028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, various convolutional neural networks have successfully applied to single-image super-resolution task. However, most existing models with deeper or wider networks require heavy computation and memory consumption that restrict them in practice. To solve the above questions, we propose a lightweight multiscale residual attention network, which not merely can extract more detail to improve the quality of the image but also decrease the usage of the parameters. More specifically, a multiscale residual attention block (MRAB) as the basic unit can fully exploit the image features with different sizes of convolutional kernels. Meanwhile, the attention mechanism can be adaptive to recalibrate channel and spatial information of feature mappings. Furthermore, a local information integration module (LFIM) is designed as the network architecture to maximize the use of local information. The LFIM consists of several MRAB and a local skip connection to complement information loss. Our experimental results show that our method is superior to the representative algorithms in performance with fewer parameters and computational overhead.
引用
收藏
页数:19
相关论文
共 51 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[3]   Single Image Super-Resolution via a Holistic Attention Network [J].
Niu, Ben ;
Wen, Weilei ;
Ren, Wenqi ;
Zhang, Xiangde ;
Yang, Lianping ;
Wang, Shuzhen ;
Zhang, Kaihao ;
Cao, Xiaochun ;
Shen, Haifeng .
COMPUTER VISION - ECCV 2020, PT XII, 2020, 12357 :191-207
[4]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[5]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[6]   A Deep Convolutional Neural Network with Selection Units for Super-Resolution [J].
Choi, Jae-Seok ;
Kim, Munchurl .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1150-1156
[7]   Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search [J].
Chu, Xiangxiang ;
Zhang, Bo ;
Ma, Hailong ;
Xu, Ruijun ;
Li, Qingyuan .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :59-64
[8]   Image quality assessment based on a degradation model [J].
Damera-Venkata, N ;
Kite, TD ;
Geisler, WS ;
Evans, BL ;
Bovik, AC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) :636-650
[9]  
Dong C., 2015, arXiv
[10]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407