Differential phase-contrast interior tomography

被引:21
作者
Cong, Wenxiang [1 ]
Yang, Jiangsheng [2 ]
Wang, Ge [1 ]
机构
[1] Virginia Tech, Biomed Imaging Div, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
RAY TALBOT INTERFEROMETRY; IMAGE-RECONSTRUCTION; HILBERT TRANSFORM;
D O I
10.1088/0031-9155/57/10/2905
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Differential phase-contrast interior tomography allows reconstruction of a refractive index distribution over a region of interest (ROI) for visualization and analysis of structures inside a large biological specimen. In the imaging mode, x-ray scanning only targets an ROI in an object and a narrow beam passes through the object, allowing a significant reduction of both radiation dose and system cost. Inspired by recently developed compressive sensing theory, in a numerical analysis framework we show that accurate interior reconstruction can be achieved on an ROI from truncated differential projection data through the ROI via the total variation minimization, assuming a piecewise constant distribution of the refractive indices in the ROI. Then, we develop a practical iterative algorithm for such an interior reconstruction and perform numerical experiments to demonstrate the feasibility of the proposed approach.
引用
收藏
页码:2905 / 2914
页数:10
相关论文
共 22 条
[1]   Region-of-interest imaging in differential phase-contrast tomography [J].
Anastasio, Mark A. ;
Pan, Xiaochuan .
OPTICS LETTERS, 2007, 32 (21) :3167-3169
[2]  
Cong W, 2012, OPT LETT IN PRESS
[3]   Solving the interior problem of computed tomography using a priori knowledge [J].
Courdurier, M. ;
Noo, F. ;
Defrise, M. ;
Kudo, H. .
INVERSE PROBLEMS, 2008, 24 (06)
[4]  
Courdurier M, 2007, THESIS U WASHINGTON
[5]   Truncated Hilbert transform and image reconstruction from limited tomographic data [J].
Defrise, Michel ;
Noo, Frederic ;
Clackdoyle, Rolf ;
Kudo, Hiroyuki .
INVERSE PROBLEMS, 2006, 22 (03) :1037-1053
[6]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[7]   General Total Variation Minimization Theorem for Compressed Sensing Based Interior Tomography [J].
Han, Weimin ;
Yu, Hengyong ;
Wang, Ge .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2009, 2009
[8]   Demonstration of X-Ray Talbot interferometry [J].
Momose, A ;
Kawamoto, S ;
Koyama, I ;
Hamaishi, Y ;
Takai, K ;
Suzuki, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (7B) :L866-L868
[9]   Phase-contrast X-ray computed tomography for observing biological soft tissues [J].
Momose, A ;
Takeda, T ;
Itai, Y ;
Hirano, K .
NATURE MEDICINE, 1996, 2 (04) :473-475
[10]   Phase tomography by X-ray Talbot interferometry for biological imaging [J].
Momose, Atsushi ;
Yashiro, Wataru ;
Takeda, Yoshihiro ;
Suzuki, Yoshio ;
Hattori, Tadashi .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (6A) :5254-5262