Hyperbolic Evolution Equations, Lorentzian Holonomy, and Riemannian Generalised Killing Spinors

被引:4
作者
Leistner, Thomas [1 ]
Lischewski, Andree [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Humboldt Univ, Inst Math, Unter Linden 6, D-10117 Berlin, Germany
基金
澳大利亚研究理事会;
关键词
Lorentzian geometry; Holonomy groups; Parallel null vector field; Cauchy problem; Killing spinors; Parallel spinors; Symmetric hyperbolic system; CAUCHY-PROBLEMS; MANIFOLDS; METRICS;
D O I
10.1007/s12220-017-9941-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Cauchy problem for parallel null vector fields on smooth Lorentzian manifolds is well-posed. The proof is based on the derivation and analysis of suitable hyperbolic evolution equations given in terms of the Ricci tensor and other geometric objects. Moreover, we classify Riemannian manifolds satisfying the constraint conditions for this Cauchy problem. It is then possible to characterise certain holonomy reductions of globally hyperbolic manifolds with parallel null vector in terms of flow equations for Riemannian special holonomy metrics. For exceptional holonomy groups these flow equations have been investigated in the literature before in other contexts. As an application, the results provide a classification of Riemannian manifolds admitting imaginary generalised Killing spinors. We will also give new local normal forms for Lorentzian metrics with parallel null spinor in any dimension.
引用
收藏
页码:33 / 82
页数:50
相关论文
共 37 条
  • [1] The Cauchy Problems for Einstein Metrics and Parallel Spinors
    Ammann, Bernd
    Moroianu, Andrei
    Moroianu, Sergiu
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (01) : 173 - 198
  • [2] [Anonymous], 1991, TEUBNER TEXTE MATH
  • [3] [Anonymous], 1993, P S PURE MATH
  • [4] Generalized cylinders in semi-Riemannian and spin geometry
    Bär, C
    Gauduchon, P
    Moroianu, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (03) : 545 - 580
  • [5] Bar C., 2007, ESI LECT MATH PHYS, DOI DOI 10.4171/037
  • [6] Baum H., 1989, ANN GLOB ANAL GEOM, V7, P205
  • [7] Baum H., 1985, B POLISH ACAD SCI MA, V33, P165
  • [8] Baum H., 1981, Teubner-Texte Math., V41
  • [9] Baum H., 1989, Annals of Global Analysis and Geometry, V7, P141
  • [10] Cauchy problems for Lorentzian manifolds with special holonomy
    Baum, Helga
    Leistner, Thomas
    Lischewski, Andree
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 45 : 43 - 66