SiamAGN: Siamese attention-guided network for visual tracking

被引:4
|
作者
Wei, Bingbing [1 ,2 ,3 ,4 ]
Chen, Hongyu [1 ,2 ,3 ]
Ding, Qinghai [5 ]
Luo, Haibo [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Space Star Technol Co Ltd, Beijing 100086, Peoples R China
关键词
Object tracking; Siamese -based trackers; Similarity calculation; Attention; -guided; ROBUST;
D O I
10.1016/j.neucom.2022.09.066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most Siamese-based trackers utilize cross-correlation to calculate the similarity scores between the target template and the search image, which may cause the loss of spatial information and lead to inaccurate target estimation. To address this issue, we propose an attention-guided model under the Siamese framework for object tracking, named SiamAGN. Specifically, we combine the template and search image through the proposed feature fusion module. It contains a self-context interaction (SCI) module, crosscontext interaction (CCI) module, and target location module (TLM). SCI based on self-attention learns global context by emphasizing channel-wise complementary features. CCI based on cross-attention explores rich dynamic context via the channel interaction between the template and the search image. TLM based on cross-attention reformulates the template according to the pixel-level similarity scores between the template and the search image, which can keep as much spatial information as possible and enable our model to predict more precise bounding boxes. Extensive experimental results on the GOT10k, OTB100, VOT2016, VOT2018, UAV123, and LaSOT benchmarks indicate that the proposed tracker SiamAGN achieves competitive performance compared with state-of-the-art trackers.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 50 条
  • [1] Siamese Progressive Attention-Guided Fusion Network for Object Tracking
    Fan Y.
    Song X.
    Song, Xiaoning (x.song@jiangnan.edu.cn), 1600, Institute of Computing Technology (33): : 199 - 206
  • [2] SiamAtt: Siamese attention network for visual tracking
    Yang, Kai
    He, Zhenyu
    Zhou, Zikun
    Fan, Nana
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [3] FLOW GUIDED SIAMESE NETWORK FOR VISUAL TRACKING
    Wang, Guokun
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 231 - 235
  • [4] Siamese Guided Anchoring Network for Visual Tracking
    Zhou, Yifei
    Li, Jing
    Chang, Jun
    Xiao, Yafu
    Wan, Jun
    Sun, Hang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Visual Tracking With Siamese Network Based on Fast Attention Network
    Qin, Lin
    Yang, Yang
    Huang, Dandan
    Zhu, Naibo
    Yang, Han
    Xu, Zhisong
    IEEE ACCESS, 2022, 10 : 35632 - 35642
  • [6] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [7] Attention-Guided Siamese Fusion Network for Change Detection of Remote Sensing Images
    Chen, Puhua
    Guo, Lei
    Zhang, Xiangrong
    Qin, Kai
    Ma, Wentao
    Jiao, Licheng
    REMOTE SENSING, 2021, 13 (22)
  • [8] Object semantic-guided graph attention feature fusion network for Siamese visual tracking
    Zhang, Jianwei
    Miao, Mengen
    Zhang, Huanlong
    Wang, Jingchao
    Zhao, Yanchun
    Chen, Zhiwu
    Qiao, Jianwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [9] MASNet: mixed attention Siamese network for visual object tracking
    Zhang, Jianwei
    Zhang, Zhichen
    Zhang, Huanlong
    Wang, Jingchao
    Wang, He
    Zheng, Menya
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [10] Siamese-Based Twin Attention Network for Visual Tracking
    Bao, Hua
    Shu, Ping
    Zhang, Hongchao
    Liu, Xiaobai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 847 - 860