An explicit upper bound for |? (1+it)|

被引:7
作者
Patel, Dhir [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 05期
关键词
van der Corput estimate; Exponential sums; Riemann zeta function; van der Corput test; Explicit derivative tests; Cheng-Graham lemma; Explicit estimate for Riemann zeta function; Explicit van der Corput bound; RIEMANN ZETA-FUNCTION; FORMULA;
D O I
10.1016/j.indag.2022.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an explicit bound for |zeta (1 + it)| in the form of |zeta (1 + it)| <= min(log t, 2 log t + 1.93, 1 1 5 log t +44.02). This improves on the current best-known explicit bound of |zeta(1 + it)| & LE; 62.6(log t)2/3 up until t of the magnitude 10107.(c) 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1012 / 1032
页数:21
相关论文
共 36 条
[1]   HIGH PRECISION COMPUTATION OF RIEMANN'S ZETA FUNCTION BY THE RIEMANN-SIEGEL FORMULA, I [J].
Arias de Reyna, J. .
MATHEMATICS OF COMPUTATION, 2011, 80 (274) :995-1009
[2]  
Arias de Reyna J., 2020, NUMBER THEORY
[3]  
Backlund R.J., 1916, Acta Math., V41, P345
[4]   Explicit estimates for the Riemann zeta function [J].
Cheng, YF ;
Graham, SW .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1261-1280
[5]   An explicit upper bound for the Riemann zeta-function near the line σ=1 [J].
Cheng, YY .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (01) :115-140
[6]  
Ellison W., 1985, PRIME NUMBERS WILEY
[7]   Vinogradov's integral and bounds for the Riemann zeta function [J].
Ford, K .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :565-633
[8]  
Ford K, 2020, COMMUNICATION
[9]   An investigation into explicit versions of Burgess' bound [J].
Francis, Forrest J. .
JOURNAL OF NUMBER THEORY, 2021, 228 :87-107
[10]  
GRAHAM S., 1991, London Mathematical Society Lecture Note Series, V126