On the sharp upper bound for the number of holomorphic mappings of Riemann surfaces of low genus

被引:1
作者
Mednykh, I. A. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
de Franchis theorem; holomorphic mapping; Riemann surface; orbifold; automorphism; THEOREM; FRANCHIS; MAPS;
D O I
10.1134/S0037446612020097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an upper bound for the number of holomorphic mappings of a genus 3 Riemann surface onto a genus 2 Riemann surface in a series of cases. In particular, we establish that the number of holomorphic mappings of an arbitrary genus 3 Riemann surface onto an arbitrary genus 2 Riemann surface is at most 48. We show that this estimate is sharp and find pairs of Riemann surfaces for which it is attained.
引用
收藏
页码:259 / 273
页数:15
相关论文
共 24 条