Speed of complex network synchronization

被引:24
作者
Grabow, C. [1 ]
Grosskinsky, S. [2 ,3 ]
Timme, M. [1 ,4 ,5 ]
机构
[1] Max Planck Inst Dynam & Self Org, Network Dynam Grp, D-37073 Gottingen, Germany
[2] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[4] Bernstein Ctr Computat Neurosci BCCN, D-37073 Gottingen, Germany
[5] Univ Gottingen, Fac Phys, D-37077 Gottingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
COLLECTIVE DYNAMICS; STABILITY;
D O I
10.1140/epjb/e2011-20038-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Synchrony is one of the most common dynamical states emerging on networks. The speed of convergence towards synchrony provides a fundamental collective time scale for synchronizing systems. Here we study the asymptotic synchronization times for directed networks with topologies ranging from completely ordered, grid-like, to completely disordered, random, including intermediate, partially disordered topologies. We extend the approach of master stability functions to quantify synchronization times. We find that the synchronization times strongly and systematically depend on the network topology. In particular, at fixed in-degree, stronger topological randomness induces faster synchronization, whereas at fixed path length, synchronization is slowest for intermediate randomness in the small-world regime. Randomly rewiring real-world neural, social and transport networks confirms this picture.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 53 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 2003, PHYS TODAY, DOI DOI 10.1063/1.1784276
[3]  
[Anonymous], NEW J PHYS
[4]  
[Anonymous], HIDDEN POWER SOCIAL
[5]  
[Anonymous], 1992, AY's Neuroanatomy of C. elegans for Computation
[6]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[7]  
[Anonymous], J MATH SOCIOL
[8]  
[Anonymous], SIAM J APPL MATH
[9]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[10]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153