The single-component Na5Y(MoO4)(4):Dy3+, Tm3+ white-emitting phosphor was prepared by the sol-combustion method, and Tm3+ was codoped for color-tunable white emission. The XRD patterns confirm that the as-prepared samples have a Na5Y(MoO4)4 structure and do not change with Dy3+/Tm3+ codoping. Under ultraviolet excitation at 352 nm, the Na5Y(MoO4)4:Dy3+ phosphor shows a characteristic white emission consisting of a weak peak at 485 nm and a strong peak at 577 nm. By codoping a small amount of Tm3+, the blue emission of phosphor is enhanced, and the chromaticity coordinates can be adjusted between (0.3663, 0.416) and (0.319, 0.3407); thus, color-tunable white emission is achieved with the synergistic effect of Dy3+ and Tm3+. The luminescence intensity of Na5Y(MoO4)4:Dy3+, Tm3+ at 483 K still retains 72% of the initial intensity, showing excellent thermal stability. By combining Na5Y(MoO4)4:Dy3+, Tm3+ with a 365 nm chip, the fabricated w-LED device emits bright white light for illumination. Therefore, the as-prepared Na5Y(MoO4)4:Dy3+, Tm3+ has potential applications in the field of w-LEDs as white-emitting phosphors.