Bias thermal stability improvement of MEMS gyroscope with quadrature motion correction and temperature self-sensing compensation

被引:12
作者
Cui, Jian [1 ]
Zhao, Qiancheng [1 ]
机构
[1] Peking Univ, Inst Microelect, Natl Key Lab Sci & Technol Micro Nano Fabricat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
MEMS - Electromechanical devices - Thermodynamic stability;
D O I
10.1049/mnl.2019.0479
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bias thermal stability of microelectromechanical system (MEMS) gyroscope is a significant performance parameter for industrial and tactical applications. The quadrature coupling motion and demodulation phase error are two main sources of bias drift. This work presents a MEMS tuning fork gyroscope with dedicated electrostatic correction combs finger structure that can be implemented to suppress the quadrature motion. By utilising a closed-loop control for the coupling stiffness, the temperature variation of quadrature motion achieves >260 times of magnitude reduction, resulting in the thermal bias drift decreased from 0.98 to 0.18 degrees/s with 5.4 times improvement over the temperature from -40 to 60 degrees C. The results indicate that the variation of the quadrature motion is the dominant factor that determines the temperature bias drift of the custom-designed gyroscope. The compensated bias stability (1 sigma) is measured to be similar to 8.6 degrees/h by using temperature self-sensing compensation technique over the whole temperature operating range, which demonstrates a considerably competitive result for the tactical-grade MEMS gyroscope.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 14 条
[1]   A Novel Temperature Compensation Method for a MEMS Gyroscope Oriented on a Periphery Circuit [J].
Cao, Huiliang ;
Li, Hongsheng ;
Sheng, Xia ;
Wang, Shourong ;
Yang, Bo ;
Huang, Libin .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
[2]  
Chiu S. -R., 2012, SENSORS, 2012 IEEE, P1, DOI DOI 10.1109/ICSENS.2012.6411164
[3]  
Eminoglu Burak, 2014, IEEE Sensors 2014. Proceedings, P922, DOI 10.1109/ICSENS.2014.6985152
[4]  
Facchinetti S, 2017, INT SYMP INERT SENSO, P125, DOI 10.1109/ISISS.2017.7935673
[5]   A temperature characteristic research and compensation design for micro-machined gyroscope [J].
Fu, Qiang ;
Di, Xin-Peng ;
Chen, Wei-Ping ;
Yin, Liang ;
Liu, Xiao-Wei .
MODERN PHYSICS LETTERS B, 2017, 31 (06)
[6]   A Dual-Mode Actuation and Sensing Scheme for In-Run Calibration of Bias and Scale Factor Errors in Axisymmetric Resonant Gyroscopes [J].
Norouzpour-Shirazi, Arashk ;
Ayazi, Farrokh .
IEEE SENSORS JOURNAL, 2018, 18 (05) :1993-2005
[7]   Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing [J].
Prikhodko, Igor P. ;
Trusov, Alexander A. ;
Shkel, Andrei M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 201 :517-524
[8]  
Schmidt G., 1997, GPS INS TECHNOLOGY T, P1018, DOI DOI 10.2514/6.1997-3826
[9]   Bias Contribution Modeling for a Symmetrical Micromachined Coriolis Vibratory Gyroscope [J].
Shen, Qiang ;
Li, He ;
Hao, Yongcun ;
Yuan, Weizheng ;
Chang, Honglong .
IEEE SENSORS JOURNAL, 2016, 16 (03) :723-733
[10]   Quadrature-Error Compensation and Corresponding Effects on the Performance of Fully Decoupled MEMS Gyroscopes [J].
Tatar, Erdinc ;
Alper, Said Emre ;
Akin, Tayfun .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2012, 21 (03) :656-667