Recent Progresses and Perspectives of UV Laser Annealing Technologies for Advanced CMOS Devices

被引:8
作者
Tabata, Toshiyuki [1 ]
Roze, Fabien [1 ]
Thuries, Louis [1 ]
Halty, Sebastien [1 ]
Raynal, Pierre-Edouard [1 ]
Karmous, Imen [1 ]
Huet, Karim [1 ]
机构
[1] Laser Syst Solut Europe LASSE, 145 Rue Caboeufs, F-92230 Gennevilliers, France
关键词
UV laser annealing; CMOS; 3D integration; thermal budget; FEOL; MOL; BEOL; dopant activation; interconnect; ferroelectricity; SOLID-PHASE CRYSTALLIZATION; RECRYSTALLIZATION; INTEGRATION; EVOLUTION; DOPANT; FILMS;
D O I
10.3390/electronics11172636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The state-of-the-art CMOS technology has started to adopt three-dimensional (3D) integration approaches, enabling continuous chip density increment and performance improvement, while alleviating difficulties encountered in traditional planar scaling. This new device architecture, in addition to the efforts required for extracting the best material properties, imposes a challenge of reducing the thermal budget of processes to be applied everywhere in CMOS devices, so that conventional processes must be replaced without any compromise to device performance. Ultraviolet laser annealing (UV-LA) is then of prime importance to address such a requirement. First, the strongly limited absorption of UV light into materials allows surface-localized heat source generation. Second, the process timescale typically ranging from nanoseconds (ns) to microseconds (mu s) efficiently restricts the heat diffusion in the vertical direction. In a given 3D stack, these specific features allow the actual process temperature to be elevated in the top-tier layer without introducing any drawback in the bottom-tier one. In addition, short-timescale UV-LA may have some advantages in materials engineering, enabling the nonequilibrium control of certain phenomenon such as crystallization, dopant activation, and diffusion. This paper reviews recent progress reported about the application of short-timescale UV-LA to different stages of CMOS integration, highlighting its potential of being a key enabler for next generation 3D-integrated CMOS devices.
引用
收藏
页数:25
相关论文
共 106 条
[1]   Solid phase recrystallization induced by multi-pulse nanosecond laser annealing [J].
Alba, Pablo Acosta ;
Aubin, Joris ;
Perrot, Sylvain ;
Mazzamuto, Fulvio ;
Grenier, Adeline ;
Kerdiles, Sebastien .
APPLIED SURFACE SCIENCE ADVANCES, 2021, 3
[2]   Atomistic computer simulation of explosive crystallization in pure silicon and germanium [J].
Albenze, EJ ;
Thompson, MO ;
Clancy, P .
PHYSICAL REVIEW B, 2004, 70 (09)
[3]  
Batude P, 2017, INT EL DEVICES MEET, DOI 10.1109/IEDM.2017.8268316
[4]   Composite Interconnects for High-Performance Computing Beyond the 7nm Node [J].
Bhosale, P. ;
Parikh, S. ;
Lanzillo, N. ;
Tao, R. ;
Nogami, T. ;
Gage, M. ;
Shaviv, R. ;
Huang, H. ;
Simon, A. ;
Stolfi, M. ;
Reidy, S. ;
Lee, J. ;
Loubet, N. ;
Haran, B. .
2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
[5]  
Böscke TS, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
[6]   Advanced dopant and self-diffusion studies in silicon [J].
Bracht, Hartmut .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 253 (1-2) :105-112
[7]  
Brunet L, 2018, INT EL DEVICES MEET
[8]  
Bury E, 2013, INT RELIAB PHY SYM
[9]   28nm FDSOI CMOS technology (FEOL and BEOL) thermal stability for 3D Sequential Integration: yield and reliability analysis [J].
Cavalcante, C. ;
Fenouillet-Beranger, C. ;
Batude, P. ;
Garros, X. ;
Federspiel, X. ;
Lacord, J. ;
Kerdiles, S. ;
Royet, A. S. ;
Acosta-Alba, P. ;
Rozeau, O. ;
Barral, V ;
Arnaud, F. ;
Planes, N. ;
Sassoulas, P. O. ;
Ghegin, E. ;
Beneyton, R. ;
Gregoire, M. ;
Weber, O. ;
Guerin, C. ;
Arnaud, L. ;
Moreau, S. ;
Kies, R. ;
Romano, G. ;
Rambal, N. ;
Magalhaes, A. ;
Ghibaudo, G. ;
Colinge, J. P. ;
Vinet, M. ;
Andrieu, F. .
2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
[10]   Electron scattering at surfaces and grain boundaries in Cu thin films and wires [J].
Chawla, J. S. ;
Gstrein, F. ;
O'Brien, K. P. ;
Clarke, J. S. ;
Gall, D. .
PHYSICAL REVIEW B, 2011, 84 (23)