EQUIVARIANT CALCULUS OF FUNCTORS AND Z/2-ANALYTICITY OF REAL ALGEBRAIC K-THEORY

被引:6
作者
Dotto, Emanuele [1 ]
机构
[1] MIT, Math, 77 Massachusetts Ave,Bldg E18, Cambridge, MA 02139 USA
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
Hermitian K-theory; equivariant homotopy theory; SPACES;
D O I
10.1017/S1474748015000067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial G-sets to symmetric G-spectra, where G is a finite group. We extend a notion of G-linearity suggested by Blumberg to define stably excisive and rho-analytic homotopy functors, as well as a G-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected G-maps to G-equivalences. It is analogous to the classical result of Goodwillie that 'functors with zero derivative are locally constant'. As the main example, we show that Hesselholt and Madsen's Real algebraic K-theory of a split square zero extension of Wall antistructures defines an analytic functor in the Z/2-equivariant setting. We further show that the equivariant derivative of this Real K-theory functor is Z/2-equivalent to Real MacLane homology.
引用
收藏
页码:829 / 883
页数:55
相关论文
共 28 条
  • [11] Goodwillie T G, 1990, K-Theory, V4, P1
  • [12] Goodwillie T G, 1992, K-Theory, V5, P295
  • [13] Calculus III: Taylor series
    Goodwillie, TG
    [J]. GEOMETRY & TOPOLOGY, 2003, 7 : 645 - 711
  • [14] HESSELHOLT L., 2015, K THEORY IN PRESS
  • [15] Hirschhorn PS., 2003, Mathematical Surveys and Monographs
  • [16] Constructions and Devissage in Hermitian K-theory
    Hornbostel, J
    [J]. K-THEORY, 2002, 26 (02): : 139 - 170
  • [17] LURIE J., 2015, HIGHER ALGEBRA
  • [18] Mandell MA, 2002, MEM AM MATH SOC, V159, P1
  • [19] Mandell MA., 2004, CONTEMP MATH, V346, P399
  • [20] Relative algebraic K-theory and topological cyclic homology
    McCarthy, R
    [J]. ACTA MATHEMATICA, 1997, 179 (02) : 197 - 222