EQUIVARIANT CALCULUS OF FUNCTORS AND Z/2-ANALYTICITY OF REAL ALGEBRAIC K-THEORY

被引:6
作者
Dotto, Emanuele [1 ]
机构
[1] MIT, Math, 77 Massachusetts Ave,Bldg E18, Cambridge, MA 02139 USA
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
Hermitian K-theory; equivariant homotopy theory; SPACES;
D O I
10.1017/S1474748015000067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial G-sets to symmetric G-spectra, where G is a finite group. We extend a notion of G-linearity suggested by Blumberg to define stably excisive and rho-analytic homotopy functors, as well as a G-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected G-maps to G-equivalences. It is analogous to the classical result of Goodwillie that 'functors with zero derivative are locally constant'. As the main example, we show that Hesselholt and Madsen's Real algebraic K-theory of a split square zero extension of Wall antistructures defines an analytic functor in the Z/2-equivariant setting. We further show that the equivariant derivative of this Real K-theory functor is Z/2-equivalent to Real MacLane homology.
引用
收藏
页码:829 / 883
页数:55
相关论文
共 28 条
  • [1] A generalization of Snaith-type filtration
    Arone, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (03) : 1123 - 1150
  • [2] Calculus of functors and model categories
    Biedermann, Georg
    Chorny, Boris
    Roendigs, Oliver
    [J]. ADVANCES IN MATHEMATICS, 2007, 214 (01) : 92 - 115
  • [3] Calculus of functors and model categories, II
    Biedermann, Georg
    Roendigs, Oliver
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (05): : 2853 - 2913
  • [4] Continuous functors as a model for the equivariant stable homotopy category
    Blumberg, Andrew J.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2255 - 2293
  • [5] DOTTO E., 2012, THESIS
  • [6] Dundas B. I., 2013, The local structure of algebraic K-theory, V18
  • [7] STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    DUNDAS, BI
    MCCARTHY, R
    [J]. ANNALS OF MATHEMATICS, 1994, 140 (03) : 685 - 701
  • [8] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    FIEDOROWICZ, Z
    PIRASHVILI, T
    SCHWANZL, R
    VOGT, R
    WALDHAUSEN, F
    [J]. MATHEMATISCHE ANNALEN, 1995, 303 (01) : 149 - 164
  • [9] GOERSS P, 1999, SIMPLICIAL HOMOTOPY, V174
  • [10] Goerss P, 2004, Contemp. Math., V346, P473