On Calabi-Yau fractional complete intersections

被引:0
作者
Lee, Tsung-Ju [1 ]
Lian, Bong H. [2 ]
Yau, Shing-Tung [3 ,4 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Calabi-Yau; mirror symmetry; fractional complete intersections; MIRROR SYMMETRY; INTEGRALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study mirror symmetry for pairs of singular Calabi-Yau varieties which are double covers of toric manifolds. Their period integrals can be seen as certain 'fractional' analogues of those of ordinary complete intersections. This new structure can then be used to solve their Riemann-Hilbert problems. The latter can then be used to answer definitively questions about mirror symmetry for this class of Calabi-Yau varieties.
引用
收藏
页码:317 / 342
页数:26
相关论文
共 19 条
[1]  
[Anonymous], 1998, Progr. Math., V160, P141, DOI DOI 10.1007/978-1-4612-0705-45
[2]  
Batyrev V., 1994, J ALGEBRAIC GEOM, V3, P493
[3]  
Batyrev VV, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P39
[4]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409
[5]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427
[6]   Mellin-Barnes integrals as Fourier-Mukai transforms [J].
Borisov, Lev A. ;
Horja, R. Paul .
ADVANCES IN MATHEMATICS, 2006, 207 (02) :876-927
[7]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[8]   GENERALIZED EULER INTEGRALS AND A-HYPERGEOMETRIC FUNCTIONS [J].
GELFAND, IM ;
KAPRANOV, MM ;
ZELEVINSKY, AV .
ADVANCES IN MATHEMATICS, 1990, 84 (02) :255-271
[9]  
Gelfand IM., 1989, Anal. i Prilozhen, V23, P12, DOI DOI 10.1007/BF01078777
[10]   DUALITY IN CALABI-YAU MODULI SPACE [J].
GREENE, BR ;
PLESSER, MR .
NUCLEAR PHYSICS B, 1990, 338 (01) :15-37