Numerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation method

被引:16
作者
Yang, Yin [1 ]
Tang, Zhuyan [1 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
关键词
Spectral collocation method; Jacobi polynomial; Fredholm integral equations; Singular kernels; CONVERGENCE ANALYSIS; LAGRANGE INTERPOLATION; GALERKIN METHODS;
D O I
10.1016/j.amc.2018.12.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the spectral collocation for Fredholm integral equations of the second kind with weakly singular kernel. The Jacobi-Gauss quadrature formula is used to approximate the integral operator in the numerical implementation. We obtain the convergence rates for the approximated solution of weakly singular Fredholm integral equations, which show that the errors of the approximate solution decay exponentially in L-infinity-norm and weighted L-2-norm. Some numerical examples are given to illustrate the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 324
页数:11
相关论文
共 20 条
[1]  
Brunner H., 2004, COLLOCATION METHODS
[2]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[3]   CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL [J].
Chen, Yanping ;
Tang, Tao .
MATHEMATICS OF COMPUTATION, 2010, 79 (269) :147-167
[4]  
COLTON D., 1998, INVERSE COUSTIC ELEC
[5]  
Gao F., 2017, THERM SCI, V21, P197
[6]  
Liang X., 2018, ADV DIFF EQU, V1, P25
[7]   Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey [J].
Mastroianni, G ;
Occorsio, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) :325-341
[8]   MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .3. [J].
NEVAI, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :669-698
[10]  
Tang T, 2008, J COMPUT MATH, V26, P825