Database approaches and data representation in structural bioinformatics

被引:0
|
作者
Gopal, Kreshna [1 ]
Sacchettini, James C. [2 ]
Ioerger, Thomas R. [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX USA
来源
PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II | 2007年
关键词
structural bioinformatics; X-ray crystallography; electron density map interpretation; features;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Database approaches are widely used in structural bioinformatics, since ab initio techniques are often computationally prohibitive, and the structure of biological macromolecules are typically derived from a limited set of motifs. There are several issues and challenges that arise when developing methods to enable efficient database retrieval. For example, how can complex data be represented efficiently, and what should be the size and composition of the database? In this work, we discuss some of these challenges, based on a crystallographic protein model-building program called TEXTAL. In particular, we discuss how structural information on amino acids is represented (as numeric features), how difficult it is to recognize amino acids (based on 3D electron density patterns), and what types of examples (and how many of them) need to be stored in the database. These insights are potentially useful in many other related applications, such as structure-based drug design, protein-protein interaction, discriminating nucleic acids and proteins in hybrid complexes, etc.
引用
收藏
页码:425 / +
页数:3
相关论文
共 50 条
  • [41] Representation of Spatial Data Processing Pipelines Using Relational Database
    Okladnikov I.G.
    Supercomputing Frontiers and Innovations, 2021, 8 (04) : 40 - 49
  • [42] PATTERN DATA REPRESENTATION AND MANAGEMENT IN IMAGE DATABASE SYSTEMS.
    Sakauchi, Masao
    Ohsawa, Yutaka
    Systems and Computers in Japan, 1986, 17 (01) : 83 - 91
  • [43] IUPAC, nomenclature, and chemical representation: From the perspective of a worldwide structural database
    Lightfoot, Matthew
    Bruno, Ian
    Tovee, Clare
    Ward, Suzanna
    Wiggin, Seth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [44] A structural approach to the representation of life history data
    Butts, CT
    Pixley, JE
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2004, 28 (02): : 81 - 124
  • [45] Bioinformatics approaches to predict target genes from transcription factor binding data
    Essebier, Alexandra
    Lamprecht, Marnie
    Piper, Michael
    Boden, Mikael
    METHODS, 2017, 131 : 111 - 119
  • [46] Editorial: Structural bioinformatics and biophysical approaches for understanding the plant responses to biotic and abiotic stresses
    Sperotto, Raul A.
    Hrmova, Maria
    Graether, Steffen P.
    Timmers, Luis Fernando S. M.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [47] Data dependency based recovery approaches in survival database systems
    Zheng, Jiping
    Qin, Xiaolin
    Sun, Jin
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 1131 - +
  • [48] Geminivirus data warehouse: a database enriched with machine learning approaches
    Silva, Jose Cleydson F.
    Carvalho, Thales F. M.
    Basso, Marcos F.
    Deguchi, Michihito
    Pereira, Welison A.
    Sobrinho, Roberto R.
    Vidigal, Pedro M. P.
    Brustolini, Otavio J. B.
    Silva, Fabyano F.
    Dal-Bianco, Maximiller
    Fontes, Renildes L. F.
    Santos, Anesia A.
    Zerbini, Francisco Murilo
    Cerqueira, Fabio R.
    Fontes, Elizabeth P. B.
    BMC BIOINFORMATICS, 2017, 18
  • [49] Geminivirus data warehouse: a database enriched with machine learning approaches
    Jose Cleydson F. Silva
    Thales F. M. Carvalho
    Marcos F. Basso
    Michihito Deguchi
    Welison A. Pereira
    Roberto R. Sobrinho
    Pedro M. P. Vidigal
    Otávio J. B. Brustolini
    Fabyano F. Silva
    Maximiller Dal-Bianco
    Renildes L. F. Fontes
    Anésia A. Santos
    Francisco Murilo Zerbini
    Fabio R. Cerqueira
    Elizabeth P. B. Fontes
    BMC Bioinformatics, 18
  • [50] DATABASE INTRUSION DETECTION USING SEQUENTIAL DATA MINING APPROACHES
    Abd Elaziz, Pakinam Elamein
    Sobh, Mohamed
    Mohamed, Hoda K.
    2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2014, : 104 - 111