Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance
被引:83
作者:
Liu, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Liu, Kai
[1
]
Li, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Li, Qiong
[1
]
Ma, Jiechao
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Ma, Jiechao
[2
]
Zhou, Zijian
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Zhou, Zijian
[2
]
Sun, Mengmeng
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Sun, Mengmeng
[2
]
Deng, Yufeng
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Deng, Yufeng
[2
]
Tu, Wenting
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Tu, Wenting
[1
]
Wang, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Wang, Yun
[1
]
Fan, Li
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Fan, Li
[1
]
Xia, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Xia, Chen
[2
]
Xiao, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Xiao, Yi
[1
]
Zhang, Rongguo
论文数: 0引用数: 0
h-index: 0
机构:
Infervis Adv Inst, Beijing, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Zhang, Rongguo
[2
]
Liu, Shiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R ChinaSecond Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Liu, Shiyuan
[1
]
机构:
[1] Second Mil Med Univ, Changzheng Hosp, Dept Radiol, 415 Fengyang Rd, Shanghai 20003, Peoples R China
Purpose: To compare sensitivity in the detection of lung nodules between the deep learning (DL) model and radiologists using various patient population and scanning parameters and to assess whether the radiologists' detection performance could be enhanced when using the DL model for assistance. Materials and Methods: A total of 12 754 thin-section chest CT scans from January 2012 to June 2017 were retrospectively collected for DL model training, validation, and testing. Pulmonary nodules from these scans were categorized into four types: solid, subsolid, calcified, and pleural. The testing dataset was divided into three cohorts based on radiation dose, patient age, and CT manufacturer. Detection performance of the DL model was analyzed by using a free-response receiver operating characteristic curve. Sensitivities of the DL model and radiologists were compared by using exploratory data analysis. False-positive detection rates of the DL model were compared within each cohort. Detection performance of the same radiologist with and without the DL model were compared by using nodule-level sensitivity and patient-level localization receiver operating characteristic curves. Results: The DL model showed elevated overall sensitivity compared with manual review of pulmonary nodules. No significant dependence regarding radiation dose, patient age range, or CT manufacturer was observed. The sensitivity of the junior radiologist was significantly dependent on patient age. When radiologists used the DL model for assistance, their performance improved and reading time was reduced. Conclusion: DL shows promise to enhance the identification of pulmonary nodules and benefit nodule management. (C) RSNA, 2019
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Causey, Jason L.
;
Zhang, Junyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Zhang, Junyu
;
Ma, Shiqian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Math, Davis, CA 95616 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Ma, Shiqian
;
Jiang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Res Ctr Management Sci & Data Analyt, Sch Informat Management & Engn, Shanghai 200433, Peoples R ChinaArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Jiang, Bo
;
Qualls, Jake A.
论文数: 0引用数: 0
h-index: 0
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Qualls, Jake A.
;
Politte, David G.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Politte, David G.
;
论文数: 引用数:
h-index:
机构:
Prior, Fred
;
Zhang, Shuzhong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Zhang, Shuzhong
;
Huang, Xiuzhen
论文数: 0引用数: 0
h-index: 0
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Causey, Jason L.
;
Zhang, Junyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Zhang, Junyu
;
Ma, Shiqian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Math, Davis, CA 95616 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Ma, Shiqian
;
Jiang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Res Ctr Management Sci & Data Analyt, Sch Informat Management & Engn, Shanghai 200433, Peoples R ChinaArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Jiang, Bo
;
Qualls, Jake A.
论文数: 0引用数: 0
h-index: 0
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Qualls, Jake A.
;
Politte, David G.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Politte, David G.
;
论文数: 引用数:
h-index:
机构:
Prior, Fred
;
Zhang, Shuzhong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
Zhang, Shuzhong
;
Huang, Xiuzhen
论文数: 0引用数: 0
h-index: 0
机构:
Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USAArkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA