On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields

被引:5
作者
Carvalho, Cicero [1 ]
Guardieiro, Joao Paulo [1 ]
Neumann, Victor G. L. [1 ]
Tizziotti, Guilherme [1 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, Av JN Avila 2121,38, BR-408902 Uberlandia, MG, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2022年 / 53卷 / 03期
关键词
Primitive element; Normal element; Normal basis; Finite fields;
D O I
10.1007/s00574-021-00277-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-qn be a finite field with q(n) elements, and let m(1) and m(2) be positive integers. Given polynomials f(1)(x), f(2)(x) is an element of F-qn [x] with deg(f(i)(x)) <= m(i), for i = 1, 2, and such that the rational function f(1)(x)/ f(2)(x) satisfies certain conditions which we define, we present a sufficient condition for the existence of a primitive element alpha is an element of F-qn, normal over F-q, such that f(1)(alpha)/f(2)(a) is also primitive.
引用
收藏
页码:677 / 699
页数:23
相关论文
共 13 条
[1]   Existence of some special primitive normal elements over finite fields [J].
Anju ;
Sharma, R. K. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 46 :280-303
[2]  
Basnet, ARXIV200501216MATHNT
[3]   On special pairs of primitive elements over a finite field [J].
Carvalho, Cicero ;
Guardieiro, Joao Paulo ;
Neumann, Victor G. L. ;
Tizziotti, Guilherme .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
[4]   The primitive normal basis theorem without a computer [J].
Cohen, SD ;
Huczynska, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :41-56
[5]   Primitive values of rational functions at primitive elements of a finite field [J].
Cohen, Stephen D. ;
Sharma, Hariom ;
Sharma, Rajendra .
JOURNAL OF NUMBER THEORY, 2021, 219 :237-246
[6]   The strong primitive normal basis theorem [J].
Cohen, Stephen D. ;
Huczynska, Sophie .
ACTA ARITHMETICA, 2010, 143 (04) :299-332
[7]   A CLASS OF INCOMPLETE CHARACTER SUMS [J].
Fu, Lei ;
Wan, Daqing .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04) :1195-1211
[8]   The existence of primitive normal elements of quadratic forms over finite fields [J].
Hazarika, Himangshu ;
Basnet, Dhiren Kumar ;
Cohen, Stephen D. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
[9]   Variations of the Primitive Normal Basis Theorem [J].
Kapetanakis, Giorgos ;
Reis, Lucas .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (07) :1459-1480
[10]   Normal bases and primitive elements over finite fields [J].
Kapetanakis, Giorgos .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 :123-143