A Comparative analysis of multiple outlier detection procedures in the linear regression model

被引:47
|
作者
Wisnowski, JW
Montgomery, DC
Simpson, JR
机构
[1] USAF Acad, Dept Math Sci, Colorado Springs, CO 80840 USA
[2] Arizona State Univ, Dept Ind & Management Syst Engn, Tempe, AZ 85287 USA
[3] Florida A&M Univ Florida State Univ, Dept Ind Engn, Tallahassee, FL 32310 USA
关键词
outlier; multiple outliers; robust regression; minimum volume ellipsoid; Monte Carlo simulation;
D O I
10.1016/S0167-9473(00)00042-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geometry, regressor variable dimension, and outlying distance in both leverage and residual on detection capability and false alarm (swamping) probability. The simulation scenarios focus on outlier configurations likely to be encountered in practice and use a designed experiment approach. The results for each scenario provide insight and limitations to performance for each technique. Finally, we summarize each procedure's performance and make recommendations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:351 / 382
页数:32
相关论文
共 50 条
  • [1] A Comparative Study of Outlier Detection Procedures in Multiple Linear Regression
    Ampanthong, Pimpan
    Suwattee, Prachoom
    IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 704 - 709
  • [2] A Comparative Study of Outlier Detection Procedures in Multiple Circular Regression
    Alkasadi, Najla Ahmed
    Ibrahim, Safwati
    Ramli, Mohammad Fadzli
    Yusoff, Mohd Irwan
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [3] Detection of model specification, outlier, and multicollinearity in multiple linear regression model using partial regression/residual plots
    Fernandez, GCJ
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1997, : 1246 - 1251
  • [4] A Comparative Study of Linear and Nonlinear Regression Models for Outlier Detection
    Dalatu, Paul Inuwa
    Fitrianto, Anwar
    Mustapha, Aida
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 316 - 326
  • [5] Robust estimation and outlier detection based on linear regression model
    Cui, Le
    Cheng, Libo
    Jiang, Xiaoming
    Chen, Zhanfang
    Albarka
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 4657 - 4664
  • [6] OUTLIER DETECTION IN LINEAR-MODELS - A COMPARATIVE-STUDY IN SIMPLE LINEAR-REGRESSION
    BALASOORIYA, U
    TSE, YK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (12) : 3589 - 3597
  • [7] Multiple-Case Outlier Detection in Multiple Linear Regression Model Using Quantum-Inspired Evolutionary Algorithm
    Akter, Salena
    Khan, Mozammel H. A.
    JOURNAL OF COMPUTERS, 2010, 5 (12) : 1779 - 1788
  • [8] Outlier Detection in Multiple Circular Regression Model using DFFITc Statistic
    Alkasadi, Najla Ahmed
    Ibrahim, Safwati
    Abuzaid, Au H. M.
    Yusoff, Mohd Irwan
    Hamid, Hashibah
    Zhe, Leow Wai
    Abd Razak, Amelia B. T.
    SAINS MALAYSIANA, 2019, 48 (07): : 1557 - 1563
  • [9] Outlier Detection in a Circular Regression Model
    Rambli, Adzhar
    Yunus, Rossita Mohamad
    Mohamed, Ibrahim
    Hussin, Abdul Ghapor
    SAINS MALAYSIANA, 2015, 44 (07): : 1027 - 1032
  • [10] Outlier robust model selection in linear regression
    Müller, S
    Welsh, AH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1297 - 1310