Reflexive polytopes of higher index and the number 12

被引:0
作者
Kasprzyk, Alexander M. [1 ]
Nill, Benjamin [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
DEL PEZZO SURFACES; EHRHART POLYNOMIALS; LATTICE POLYGONS; CLASSIFICATION; ROOTS; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce reflexive polytopes of index l as a natural generalisation of the notion of a reflexive polytope of index 1. These l-reflexive polytopes also appear as dual pairs. In dimension two we show that they arise from reflexive polygons via a change of the underlying lattice. This allows us to efficiently classify all isomorphism classes of l-reflexive polygons up to index 200. As another application, we show that any reflexive polygon of arbitrary index satisfies the famous "number 12" property. This is a new, infinite class of lattice polygons possessing this property, and extends the previously known sixteen instances. The number 12 property also holds more generally for l-reflexive non-convex or self-intersecting polygonal loops. We conclude by discussing higher-dimensional examples and open questions.
引用
收藏
页数:18
相关论文
共 33 条
[1]  
Alexeev V., 2006, MSJ MEMOIRS, V15
[2]  
Athanasiddis CA, 2005, J REINE ANGEW MATH, V583, P163
[3]  
Batyrev V.V., 1997, MIRROR SYMMETRY 2 AM, V1, P71
[4]  
Batyrev V, 2008, CONTEMP MATH, V452, P35
[5]  
Batyrev VV, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P39
[6]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203
[7]  
Batyrev VV., 1994, J. Alg. Geom., V3, P493
[8]  
Beck M, 2005, CONTEMP MATH, V374, P179
[9]  
Beck M, 2005, CONTEMP MATH, V374, P15
[10]  
Beck M., 2007, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra