Convolutions of harmonic convex mappings

被引:60
作者
Dorff, Michael [1 ]
Nowak, Maria [2 ]
Woloszkiewicz, Magdalena [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Marie Curie Sklodowska Univ, Dept Math, PL-20031 Lublin, Poland
关键词
harmonic mappings; convolutions; univalence;
D O I
10.1080/17476933.2010.487211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first author proved that the harmonic convolution of a normalized right half-plane mapping with either another normalized right half-plane mapping or a normalized vertical strip mapping is convex in the direction of the real axis, provided that it is locally univalent. In this article, we prove that in general the assumption of local univalency cannot be omitted. However, we are able to show that in some cases these harmonic convolutions are locally univalent. Using this we obtain interesting examples of univalent harmonic maps one of which is a map onto the plane with two parallel slits.
引用
收藏
页码:489 / 503
页数:15
相关论文
共 10 条
  • [1] HARMONIC-MAPPINGS ONTO CONVEX DOMAINS
    ABUMUHANNA, Y
    SCHOBER, G
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (06): : 1489 - 1530
  • [2] [Anonymous], 2002, LONDON MATH SOC MONO
  • [3] CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
  • [4] On the number of roots in an algebraic equation for a circle.
    Cohn, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1922, 14 : 110 - 148
  • [5] Dorff M., 2001, Complex Variables Theory Appl., V45, P263
  • [6] Dorff M., 1999, Comput. Methods Funct. Theory, V11, P171
  • [7] Goodloe M., 2002, COMPLEX VAR THEORY A, V47, P81
  • [8] HENGARTNER W, 1987, T AM MATH SOC, V299, P1
  • [9] Royster W.C., 1976, Publ. Math. (Debr.), V23, P339
  • [10] ON THE PRESERVATION OF DIRECTION-CONVEXITY AND THE GOODMAN-SAFF CONJECTURE
    RUSCHEWEYH, S
    SALINAS, LC
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1989, 14 (01): : 63 - 73