Comments on "the three-dimensional current and surface wave equations"

被引:56
作者
Ardhuin, Fabrice [1 ]
Jenkins, Alastair D. [2 ]
Belibassakis, Konstadinos A. [3 ]
机构
[1] Serv Hydrog & Oceanog Marine, Ctr Mil Oceanog, F-29609 Brest, France
[2] Inst Geophys, Bjerknes Ctr Climate Res, Bergen, Norway
[3] Technol Educ Inst Athens, Athens, Greece
关键词
D O I
10.1175/2007JPO3670.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The lowest order sigma-transformed momentum equation given by Mellor takes into account a phase-averaged wave forcing based on Airy wave theory. This equation is shown to be generally inconsistent because of inadequate approximations of the wave motion. Indeed the evaluation of the vertical flux of momentum requires an estimation of the pressure p and coordinate transformation function s to first order in parameters that define the large-scale evolution of the wave field, such as the bottom slope. Unfortunately, there is no analytical expression for p and s at that order. A numerical correction method is thus proposed and verified. Alternative coordinate transforms that allow a separation of wave and mean flow momenta do not suffer from this inconsistency nor do they require a numerical estimation of the wave forcing. Indeed, the problematic vertical flux is part of the wave momentum flux, thus distinct from the mean flow momentum flux, and not directly relevant to the mean flow evolution.
引用
收藏
页码:1340 / 1350
页数:11
相关论文
共 29 条
[1]   WAVE-ACTION AND ITS RELATIVES [J].
ANDREWS, DG ;
MCINTYRE, ME .
JOURNAL OF FLUID MECHANICS, 1978, 89 (DEC) :647-664
[2]   EXACT THEORY OF NON-LINEAR WAVES ON A LAGRANGIAN-MEAN FLOW [J].
ANDREWS, DG ;
MCINTYRE, ME .
JOURNAL OF FLUID MECHANICS, 1978, 89 (DEC) :609-646
[3]  
ANDREWS DG, 1978, J FLUID MECH, V95, P796
[4]   Wave-induced drift at the ocean surface [J].
Ardhuin, F ;
Martin-Lauzer, FR ;
Chapron, B ;
Craneguy, P ;
Girard-Ardhuin, F ;
Elfouhaily, T .
COMPTES RENDUS GEOSCIENCE, 2004, 336 (12) :1121-1130
[5]  
ARDHUIN F, 2005, EOS T AGU, V86, P37
[6]   Explicit wave-averaged primitive equations using a generalized Lagrangian mean [J].
Ardhuin, Fabrice ;
Rascle, Nicolas ;
Belibassakis, K. A. .
OCEAN MODELLING, 2008, 20 (01) :35-60
[7]   Momentum balance in shoaling gravity waves: Comment on 'Shoaling surface gravity waves cause a force and a torque on the bottom' by K. E. Kenyon [J].
Ardhuin, Fabrice .
JOURNAL OF OCEANOGRAPHY, 2006, 62 (06) :917-922
[8]   A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions [J].
Athanassoulis, GA ;
Belibassakis, KA .
JOURNAL OF FLUID MECHANICS, 1999, 389 :275-301
[9]   A coupled-mode model for the refraction-diffraction of linear waves over steep three-dimensional bathymetry [J].
Belibassakis, KA ;
Athanassoulis, GA ;
Gerostathis, TP .
APPLIED OCEAN RESEARCH, 2001, 23 (06) :319-336
[10]   Linear refraction-diffraction model for steep bathymetry [J].
Chandrasekera, CN ;
Cheung, KF .
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 2001, 127 (03) :161-170