Chemical Space Exploration with Active Learning and Alchemical Free Energies

被引:48
作者
Khalak, Yuriy [1 ]
Tresadern, Gary [2 ]
Hahn, David F. [2 ]
de Groot, Bert L. [1 ]
Gapsys, Vytautas [1 ]
机构
[1] Max Planck Inst Multidisciplinary Sci, Dept Theoret & Computat Biophys, Computat Biomol Dynam Grp, D-37077 Gottingen, Germany
[2] Janssen Pharmaceut NV, Janssen Res & Dev, Computat Chem, B-2340 Beerse, Belgium
关键词
BINDING FREE-ENERGIES; PARTICLE MESH EWALD; DRUG DISCOVERY; FORCE-FIELDS; SOFTWARE; INHIBITOR; ACCURATE; DESIGN; POTENT;
D O I
10.1021/acs.jctc.2c00752
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Drug discovery can be thought of as a search for a needle in a haystack: searching through a large chemical space for the most active compounds. Computational techniques can narrow the search space for experimental follow up, but even they become unaffordable when evaluating large numbers of molecules. Therefore, machine learning (ML) strategies are being developed as computationally cheaper complementary techniques for navigating and triaging large chemical libraries. Here, we explore how an active learning protocol can be combined with first-principles based alchemical free energy calculations to identify high affinity phosphodiesterase 2 (PDE2) inhibitors. We first calibrate the procedure using a set of experimentally characterized PDE2 binders. The optimized protocol is then used prospectively on a large chemical library to navigate toward potent inhibitors. In the active learning cycle, at every iteration a small fraction of compounds is probed by alchemical calculations and the obtained affinities are used to train ML models. With successive rounds, high affinity binders are identified by explicitly evaluating only a small subset of compounds in a large chemical library, thus providing an efficient protocol that robustly identifies a large fraction of true positives.
引用
收藏
页码:6259 / 6270
页数:12
相关论文
共 65 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]  
Agarap A. F., 2019, ARXIV
[3]   Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides [J].
Best, Robert B. ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (26) :9004-9015
[4]   REINVENT 2.0: An AI Tool for De Novo Drug Design [J].
Blaschke, Thomas ;
Arus-Pous, Josep ;
Chen, Hongming ;
Margreitter, Christian ;
Tyrchan, Christian ;
Engkvist, Ola ;
Papadopoulos, Kostas ;
Patronov, Atanas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5918-5922
[5]   Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement [J].
Buijnsters, Peter ;
De Angelis, Meri ;
Langlois, Xavier ;
Rombouts, Frederik J. R. ;
Sanderson, Wendy ;
Tresadern, Gary ;
Ritchie, Alison ;
Trabanco, Andres A. ;
VanHoof, Greet ;
Van Roosbroeck, Yves ;
Andres, Jose-Ignacio .
ACS MEDICINAL CHEMISTRY LETTERS, 2014, 5 (09) :1049-1053
[6]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[7]   Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences [J].
Crooks, GE .
PHYSICAL REVIEW E, 1999, 60 (03) :2721-2726
[8]   ACPYPE - AnteChamber PYthon Parser interfacE [J].
Alan W Sousa da Silva ;
Wim F Vranken .
BMC Research Notes, 5 (1)
[9]  
Danishuddin A.U.K., 2016, DRUG DISCOV TODAY, V21, P1291, DOI DOI 10.1016/j.drudis.2016.06.013
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092