Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila

被引:185
作者
Khodor, Yevgenia L. [1 ,2 ]
Rodriguez, Joseph [1 ,2 ]
Abruzzi, Katharine C. [1 ,2 ]
Tang, Chih-Hang Anthony [1 ,2 ]
Marr, Michael T., II [2 ,3 ]
Rosbash, Michael [1 ,2 ]
机构
[1] Brandeis Univ, Howard Hughes Med Inst, Natl Ctr Behav Genom, Waltham, MA 02454 USA
[2] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[3] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
关键词
nascent sequencing; cotranscriptional; pre-mRNA splicing; transcriptional coupling; POLYMERASE-II; TERMINAL DOMAIN; IN-VIVO; PREMESSENGER RNA; GLOBAL ANALYSIS; INTRON REMOVAL; POL-II; TRANSCRIPTION; YEAST; ELONGATION;
D O I
10.1101/gad.178962.111
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with similar to 3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.
引用
收藏
页码:2502 / 2512
页数:11
相关论文
共 46 条
  • [1] Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes
    Abruzzi, KC
    Lacadie, S
    Rosbash, M
    [J]. EMBO JOURNAL, 2004, 23 (13) : 2620 - 2631
  • [2] Splicing-Dependent RNA Polymerase Pausing in Yeast
    Alexander, Ross D.
    Innocente, Steven A.
    Barrass, J. David
    Beggs, Jean D.
    [J]. MOLECULAR CELL, 2010, 40 (04) : 582 - 593
  • [3] SPLICING OF BALBIANI RING-1 GENE PREMESSENGER RNA OCCURS SIMULTANEOUSLY WITH TRANSCRIPTION
    BAUREN, G
    WIESLANDER, L
    [J]. CELL, 1994, 76 (01) : 183 - 192
  • [4] SPLICE SITE SELECTION, RATE OF SPLICING, AND ALTERNATIVE SPLICING ON NASCENT TRANSCRIPTS
    BEYER, AL
    OSHEIM, YN
    [J]. GENES & DEVELOPMENT, 1988, 2 (06) : 754 - 765
  • [5] RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation
    Bird, G
    Zorio, DAR
    Bentley, DL
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (20) : 8963 - 8969
  • [6] The transcriptional cycle of HIV-1 in real-time and live cells
    Boireau, Stephanie
    Maiuri, Paolo
    Basyuk, Eugenia
    de la Mata, Manuel
    Knezevich, Anna
    Pradet-Balade, Berangere
    Baecker, Volker
    Kornblihtt, Alberto
    Marcello, Alessandro
    Bertrand, Edouard
    [J]. JOURNAL OF CELL BIOLOGY, 2007, 179 (02) : 291 - 304
  • [7] The In Vivo Kinetics of RNA Polymerase II Elongation during Co-Transcriptional Splicing
    Brody, Yehuda
    Neufeld, Noa
    Bieberstein, Nicole
    Causse, Sebastien Z.
    Boehnlein, Eva-Maria
    Neugebauer, Karla M.
    Darzacq, Xavier
    Shav-Tal, Yaron
    [J]. PLOS BIOLOGY, 2011, 9 (01)
  • [8] Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements
    Burnette, JM
    Miyamoto-Sato, E
    Schaub, MA
    Conklin, J
    Lopez, AJ
    [J]. GENETICS, 2005, 170 (02) : 661 - 674
  • [9] COULTER DE, 1985, J BIOL CHEM, V260, P3190
  • [10] A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo
    Damgaard, Christian Kroun
    Kahns, Soren
    Lykke-Andersen, Soren
    Nielsen, Anders Lade
    Jensen, Torben Heick
    Kjems, Jorgen
    [J]. MOLECULAR CELL, 2008, 29 (02) : 271 - 278