On the Boussinesq-Burgers equations driven by dynamic boundary conditions

被引:7
作者
Zhu, Neng [1 ,2 ]
Liu, Zhengrong [1 ]
Zhao, Kun [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
基金
中国国家自然科学基金;
关键词
Boussinesq-Burgers equations; Initial-boundary value problem; Dynamic boundary conditions; Global well-posedness; Long-time behavior; NONLINEAR DISPERSIVE MEDIA; KORTEWEG-DEVRIES EQUATION; TIME ASYMPTOTIC-BEHAVIOR; AMPLITUDE LONG WAVES; CONSERVATION-LAWS; 2-WAY PROPAGATION; GLOBAL EXISTENCE; DIFFUSION LIMIT; WATER-WAVES; SYSTEM;
D O I
10.1016/j.jde.2017.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H-1 x H-2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2287 / 2309
页数:23
相关论文
共 45 条
[1]   EXISTENCE OF SOLUTIONS FOR A BOUSSINESQ SYSTEM ON THE HALF LINE AND ON A FINITE INTERVAL [J].
Adamy, Karine .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :25-49
[3]  
[Anonymous], NONLINEAR ANAL
[4]  
[Anonymous], 1872, J MATH PURE APPL
[5]   Numerical solution of the 'classical' Boussinesq system [J].
Antonopoulos, D. C. ;
Dougalis, V. A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) :984-1007
[6]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[7]   AN EVALUATION OF A MODEL EQUATION FOR WATER-WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 302 (1471) :457-510
[8]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[9]   MODEL FOR 2-WAY PROPAGATION OF WATER WAVES IN A CHANNEL [J].
BONA, JL ;
SMITH, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :167-182
[10]   A Boussinesq system for two-way propagation of nonlinear dispersive waves [J].
Bona, JL ;
Chen, M .
PHYSICA D, 1998, 116 (1-2) :191-224