Stopping times and related Ito's calculus with G-Brownian motion

被引:129
作者
Li, Xinpeng [1 ]
Peng, Shige [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
G-Brownian motion; Stopping time; Ito's integral; Ito's formula; STOCHASTIC CALCULUS;
D O I
10.1016/j.spa.2011.03.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the framework of G-expectation and G-Brownian motion, we introduce Ito's integral for stochastic processes without assuming quasi-continuity. Then we can obtain Ito's integral on stopping time interval. This new formulation permits us to obtain Ito's formula for a general C-1,C-2-function, which essentially generalizes the previous results of Peng (2006, 2008, 2009, 2010, 2010) [21-25] as well as those of Gao (2009) [8] and Zhang et al. (2010) [27]. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1492 / 1508
页数:17
相关论文
共 27 条
[11]   Large deviations for stochastic differential equations driven by G-Brownian motion [J].
Gao, Fuqing ;
Jiang, Hui .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (11) :2212-2240
[12]   Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion [J].
Gao, Fuqing .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3356-3382
[13]  
Hu M., 2009, ACTA MATH APPL SIN-E, V25, P1
[14]  
HU M, 2008, ARXIV08021240V1
[15]  
LI X, 2009, ARXIV09103871V2
[16]  
LIAO M, 2009, G BROWIAN MOTION LIE
[17]  
LIN Q, 2008, SOME PROPERTIES G EX
[18]  
LYONS T, 1995, APPL MATH FINANCE, V2, P7
[19]  
MAGALI K, 2008, THESIS U EVRY VAL ES
[20]  
Peng S., 2004, ACTA MATH APPL SIN-E, V20, P1, DOI DOI 10.1007/S10255-004-0161-3