Stopping times and related Ito's calculus with G-Brownian motion

被引:129
作者
Li, Xinpeng [1 ]
Peng, Shige [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
G-Brownian motion; Stopping time; Ito's integral; Ito's formula; STOCHASTIC CALCULUS;
D O I
10.1016/j.spa.2011.03.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the framework of G-expectation and G-Brownian motion, we introduce Ito's integral for stochastic processes without assuming quasi-continuity. Then we can obtain Ito's integral on stopping time interval. This new formulation permits us to obtain Ito's formula for a general C-1,C-2-function, which essentially generalizes the previous results of Peng (2006, 2008, 2009, 2010, 2010) [21-25] as well as those of Gao (2009) [8] and Zhang et al. (2010) [27]. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1492 / 1508
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 1995, Applied Mathematical Finance, DOI DOI 10.1080/13504869500000005
[2]  
[Anonymous], ARXIV09113533V1
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], ARXIV10024546
[5]   Ambiguity, risk, and asset returns in continuous time [J].
Chen, ZJ ;
Epstein, L .
ECONOMETRICA, 2002, 70 (04) :1403-1443
[6]   Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs [J].
Cheridito, Patrick ;
Soner, H. Mete ;
Touzi, Nizar ;
Victoir, Nicolas .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (07) :1081-1110
[7]  
Choquet G., 1954, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
[8]  
DENIS L, 2010, POTENTIAL ANAL, P1
[9]   Theoretical framework for the pricing of contingent claims in the presence of model uncertainty [J].
Denis, Laurent ;
Martini, Claude .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) :827-852
[10]  
Frittelli M., 2004, DYNAMIC CONVEX MEASU, P227