Spectra of upper triangular operator matrices

被引:37
作者
Benhida, C
Zerouali, EH
Zguitti, H
机构
[1] Univ Lille 1, UFR Math, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Fac Sci Rabat, Dept Math & Informat, Rabat, Morocco
关键词
local spectral theory; operator matrices; spectra;
D O I
10.1090/S0002-9939-05-07812-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X, Y be given Banach spaces. For A epsilon L(X), B epsilon L(Y) and C epsilon L(Y, X), let M-C be the operator defined on X circle plus Y by M-C = [A(0)C(B)]. We give sufficient conditions on C to get Sigma(M-C) = Sigma(M-0), where S runs over a large class of spectra. We also discuss the case of some spectra for which the latter equality fails.
引用
收藏
页码:3013 / 3020
页数:8
相关论文
共 18 条
[1]   Analytic functional models and local spectral theory [J].
Albrecht, E ;
Eschmeier, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :323-348
[2]   Common operator properties of the linear operators RS and SR [J].
Barnes, BA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :1055-1061
[3]   A note on the spectrum of an upper triangular operator matrix [J].
Barraa, M ;
Boumazgour, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) :3083-3088
[4]  
BENHIDA C, LOCAL SPECTRAL THEOR
[5]  
Bishop E., 1959, Pacific J. Math, V9, P379, DOI [DOI 10.2140/PJM.1959.9.379, 10.2140/pjm.1959.9.379]
[6]  
Colojoara I., 1968, MATH ITS APPL, V9
[7]  
Elbjaoui H., 2003, Int. J. Math. Math. Sci, V42, P2667
[8]   BISHOPS CONDITION (BETA) AND RICH EXTENSIONS OF LINEAR-OPERATORS [J].
ESCHMEIER, J ;
PUTINAR, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (02) :325-348
[9]   A NOTE ON THE RANGE OF THE OPERATOR X-] AX - XB [J].
FIALKOW, LA .
ILLINOIS JOURNAL OF MATHEMATICS, 1981, 25 (01) :112-124
[10]   SINGLE VALUED EXTENSION PROPERTY ON A BANACH-SPACE [J].
FINCH, JK .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) :61-69