The horseshoe estimator: Posterior concentration around nearly black vectors

被引:100
作者
van der Pas, S. L. [1 ]
Kleijn, B. J. K. [2 ]
van der Vaart, A. W. [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[2] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1012 WX Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
Sparsity; horseshoe prior; worst case risk; Bayesian inference; empirical Bayes; posterior contraction; normal means model; EMPIRICAL BAYES ESTIMATION; VARIABLE-SELECTION; SHRINKAGE; NEEDLES; STRAW;
D O I
10.1214/14-EJS962
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the horseshoe estimator due to Carvalho, Poison and Scott (2010) for the multivariate normal mean model in the situation that the mean vector is sparse in the nearly black sense. We assume the frequentist framework where the data is generated according to a fixed mean vector. We show that if the number of nonzero parameters of the mean vector is known, the horseshoe estimator attains the minimax l(2) risk, possibly up to a multiplicative constant. We provide conditions under which the horseshoe estimator combined with an empirical Bayes estimate of the number of nonzero means still yields the minimax risk. We furthermore prove an upper bound on the rate of contraction of the posterior distribution around the horseshoe estimator, and a lower bound on the posterior variance. These bounds indicate that the posterior distribution of the horseshoe prior may be more informative than that of other one-component priors, including the Lasso.
引用
收藏
页码:2585 / 2618
页数:34
相关论文
共 32 条
[1]   GENERALIZED DOUBLE PARETO SHRINKAGE [J].
Armagan, Artin ;
Dunson, David B. ;
Lee, Jaeyong .
STATISTICA SINICA, 2013, 23 (01) :119-143
[2]  
Bhattacharya A., 2012, ARXIV12126088
[3]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[4]  
Bogdan M., 2008, PARAMETRICS INTERDIS
[5]   The horseshoe estimator for sparse signals [J].
Carvalho, Carlos M. ;
Polson, Nicholas G. ;
Scott, James G. .
BIOMETRIKA, 2010, 97 (02) :465-480
[6]  
Carvalho CM., 2009, P MACHINE LEARNING R, V5, P73
[7]  
Castillo I., 2014, ARXIV14030735
[8]   NEEDLES AND STRAW IN A HAYSTACK: POSTERIOR CONCENTRATION FOR POSSIBLY SPARSE SEQUENCES [J].
Castillo, Ismael ;
van der Vaart, Aad .
ANNALS OF STATISTICS, 2012, 40 (04) :2069-2101
[9]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[10]   Asymptotic Properties of Bayes Risk for the Horseshoe Prior [J].
Datta, Jyotishka ;
Ghosh, Jayanta K. .
BAYESIAN ANALYSIS, 2013, 8 (01) :111-131