Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes

被引:20
|
作者
Tang, Ling [1 ,2 ]
Yao, Fang [3 ,4 ]
Wang, Hongkun [1 ,2 ]
Wang, Xiaochen [1 ,2 ]
Shen, Jiaxi [1 ,2 ]
Dai, Bing [5 ]
Wu, Haodi [6 ]
Zhou, Danni [1 ,2 ]
Guo, Fengfeng [1 ,2 ]
Wang, Jue [1 ,2 ]
Li, Tongyu [1 ,2 ]
Wang, Hao [7 ]
Gong, Tingyu [1 ,2 ]
Su, Jun [1 ,2 ]
Wang, Li [3 ,4 ]
Liang, Ping [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Med, Key Lab Combined Multiorgan Transplantat, Minist Publ Hlth,Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Translat Med, Hangzhou 310029, Peoples R China
[3] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Fuwai Hosp, State Key Lab Cardiovasc Dis, Beijing 100037, Peoples R China
[4] Peking Union Med Coll, Beijing 100037, Peoples R China
[5] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Cardiol, Hangzhou 310003, Zhejiang, Peoples R China
[6] Stanford Univ, Sch Med, Cardiovasc Inst, Stanford, CA 94305 USA
[7] Hangzhou Womens Hosp, Prenatal Diag Ctr, Hangzhou 310008, Zhejiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Pluripotent stem cells; Cardiomyocytes; TRPC1; Cardiac hypertrophy; NF-kappa B; LEFT-VENTRICULAR HYPERTROPHY; RECEPTOR POTENTIAL CHANNELS; PROTEIN-KINASE-C; UP-REGULATION; HUMAN HOMOLOG; ACTIVATION; MODULATION; GROWTH;
D O I
10.1016/j.yjmcc.2018.10.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac hypertrophy is an adaptive response against increased workload featuring by an increase in left ventricular mass and a thickening left ventricle wall. Here, we showed the expression of transient receptor potential canonical 1 (TRPC1) is higher in hearts of patients with hypertrophic cardiomyopathy (HCM) or heart failure (HF) than that of normal hearts. To better understand the mechanisms of TRPC1 in regulating cellular hypertrophy of human-based cardiomyocytes, we generated human pluripotent stem cell lines of TRPC1 knockout by CRISPR/Cas9. We demonstrated that knockout of TRPC1 significantly attenuated cardiomyocyte hypertrophy phenotype induced by phorbol 12-myristate 13-acetate, which was associated with abnormal activation of NF-kappa B. In contrast, overexpression of TRPC1 induced cardiomyocyte hypertrophy, which can be reversed by inhibition of NF-kappa B. Taken together, we established a stable human-based cardiomyocyte hypertrophy model and highlighted molecular mechanisms underlying TRPC1-mediated hypertrophy, aiding the development of therapeutic drugs for HCM and HF by targeting TRPC1.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [1] Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Park, Misun
    Yoon, Young-sup
    KOREAN CIRCULATION JOURNAL, 2018, 48 (11) : 974 - 988
  • [2] Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes
    Ovchinnikova, Ekaterina
    Hoes, Martijn
    Ustyantsev, Kirill
    Bomer, Nils
    de Jong, Tristan V.
    van der Mei, Henny
    Berezikov, Eugene
    van der Meer, Peter
    STEM CELL REPORTS, 2018, 10 (03): : 794 - 807
  • [3] Stem cell-derived extracellular vesicles reduce the expression of molecules involved in cardiac hypertrophy-In a model of human-induced pluripotent stem cell-derived cardiomyocytes
    Constantin, Alina
    Comarita, Ioana Karla
    Alexandru, Nicoleta
    Filippi, Alexandru
    Bojin, Florina
    Gherghiceanu, Mihaela
    Vilcu, Alexandra
    Nemecz, Miruna
    Niculescu, Loredan Stefan
    Paunescu, Virgil
    Georgescu, Adriana
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [4] Enhancing the Engraftment of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes via a Transient Inhibition of Rho Kinase Activity
    Zhao, Meng
    Tang, Yawen
    Ernst, Patrick J.
    Kahn-Krell, Asher
    Fan, Chengming
    Pretorius, Danielle
    Zhu, Hanxi
    Lou, Xi
    Zhou, Lufang
    Zhang, Jianyi
    Zhu, Wuqiang
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (149):
  • [5] Scutellarein protects against cardiac hypertrophy via suppressing TRAF2/NF-κB signaling pathway
    Shi, Xiujuan
    Hu, Yongjia
    Jiang, Yuxiong
    Wu, Jiawen
    Zhang, Chen
    Zhang, Jieping
    Wu, Shengyu
    Wu, Yingshi
    Dong, Weibing
    Li, Jue
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (03) : 2085 - 2095
  • [6] Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling
    Xiong, Zhaojun
    Sun, Gang
    Zhu, Cansheng
    Cheng, Baolin
    Zhang, Chengxi
    Ma, Yuedong
    Dong, Yugang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2010, 649 (1-3) : 277 - 284
  • [7] Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Rampoldi, Antonio
    Singh, Monalisa
    Wu, Qingling
    Duan, Meixue
    Jha, Rajneesh
    Maxwell, Joshua T.
    Bradner, Joshua M.
    Zhang, Xiaoyu
    Saraf, Anita
    Miller, Gary W.
    Gibson, Greg
    Brown, Lou Ann
    Xu, Chunhui
    TOXICOLOGICAL SCIENCES, 2019, 169 (01) : 280 - 292
  • [8] Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes
    Feaster, Tromondae K.
    Casciola, Maura
    Narkar, Akshay
    Blinova, Ksenia
    PHYSIOLOGICAL REPORTS, 2021, 9 (21):
  • [9] Low doses of BPA induced abnormal mitochondrial fission and hypertrophy in human embryonic stem cell-derived cardiomyocytes via the calcineurin-DRP1 signaling pathway: A comparison between XX and XY cardiomyocytes
    Cheng, Wei
    Yang, Shoufei
    Li, Xiaolan
    Liang, Fan
    Zhou, Ren
    Wang, Hui
    Feng, Yan
    Wang, Yan
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2020, 388
  • [10] Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes
    Jiang, Xin
    Yang, Ziyi
    Dong, Ming
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)