Distributed learning on 20 000+lung cancer patients - The Personal Health Train

被引:99
作者
Deist, Timo M. [1 ,2 ]
Dankers, Frank J. W. M. [1 ,3 ]
Ojha, Priyanka [4 ]
Marshall, M. Scott [4 ]
Janssen, Tomas [4 ]
Faivre-Finn, Corinne [5 ]
Masciocchi, Carlotta [7 ]
Valentini, Vincenzo [6 ,7 ]
Wang, Jiazhou [8 ]
Chen, Jiayan [8 ]
Zhang, Zhen [8 ]
Spezi, Emiliano [9 ,10 ]
Button, Mick [10 ]
Nuyttens, Joost Jan [1 ,11 ]
Vernhout, Rene [11 ]
van Soest, Johan
Jochems, Arthur [2 ]
Monshouwer, Rene [3 ]
Bussink, Johan [3 ]
Price, Gareth [5 ]
Lambin, Philippe [2 ]
Dekker, Andre [1 ]
机构
[1] Maastricht Univ Med Ctr, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[2] Maastricht Univ Med Ctr, GROW Sch Oncol & Dev Biol, D Lab Dept Precis Med, Maastricht, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands
[4] Netherlands Canc Inst Antoni van Leeuwenhoek, Dept Radiat Oncol, Amsterdam, Netherlands
[5] Univ Manchester, Manchester Acad Hlth Sci Ctr, Christie NHS Fdn Trust, Manchester, Lancs, England
[6] Univ Cattolica Sacro Cuore, Milan, Italy
[7] Fdn Policlin Univ A Gemelli IRCCS, Rome, Italy
[8] Fudan Univ, Shanghai Canc Ctr, Dept Radiat Oncol, Dept Oncol,Shanghai Med Coll, Shanghai, Peoples R China
[9] Cardiff Univ, Sch Engn, Cardiff, Wales
[10] Velindre Canc Ctr, Cardiff, Wales
[11] Erasmus MC, Canc Inst, Dept Radiat Oncol, Rotterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
Lung cancer; Big data; Distributed learning; Federated learning; Machine learning; Survival analysis; Prediction modeling; FAIR data; CARE;
D O I
10.1016/j.radonc.2019.11.019
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Access to healthcare data is indispensable for scientific progress and innovation. Sharing healthcare data is time-consuming and notoriously difficult due to privacy and regulatory concerns. The Personal Health Train (PHT) provides a privacy-by-design infrastructure connecting FAIR (Findable, Accessible, Interoperable, Reusable) data sources and allows distributed data analysis and machine learning. Patient data never leaves a healthcare institute. Materials and methods: Lung cancer patient-specific databases (tumor staging and post-treatment survival information) of oncology departments were translated according to a FAIR data model and stored locally in a graph database. Software was installed locally to enable deployment of distributed machine learning algorithms via a central server. Algorithms (MATLAB, code and documentation publicly available) are patient privacy-preserving as only summary statistics and regression coefficients are exchanged with the central server. A logistic regression model to predict post-treatment two-year survival was trained and evaluated by receiver operating characteristic curves (ROC), root mean square prediction error (RMSE) and calibration plots. Results: In 4 months, we connected databases with 23 203 patient cases across 8 healthcare institutes in 5 countries (Amsterdam, Cardiff, Maastricht, Manchester, Nijmegen, Rome, Rotterdam, Shanghai) using the PHT. Summary statistics were computed across databases. A distributed logistic regression model predicting post-treatment two-year survival was trained on 14 810 patients treated between 1978 and 2011 and validated on 8 393 patients treated between 2012 and 2015. Conclusion: The PHT infrastructure demonstrably overcomes patient privacy barriers to healthcare data sharing and enables fast data analyses across multiple institutes from different countries with different regulatory regimens. This infrastructure promotes global evidence-based medicine while prioritizing patient privacy. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 16 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions [J].
Anchukaitis, Kevin J. ;
Wilson, Rob ;
Briffa, Keith R. ;
Buntgen, Ulf ;
Cook, Edward R. ;
D'Arrigo, Rosanne ;
Davi, Nicole ;
Esper, Jan ;
Frank, David ;
Gunnarson, Bjorn E. ;
Hegerl, Gabi ;
Helama, Samuli ;
Klesse, Stefan ;
Krusic, Paul J. ;
Linderholm, Hans W. ;
Myglan, Vladimir ;
Osborn, Timothy J. ;
Zhang, Peng ;
Rydval, Milos ;
Schneider, Lea ;
Schurer, Andrew ;
Wiles, Greg ;
Zorita, Eduardo .
QUATERNARY SCIENCE REVIEWS, 2017, 163 :1-22
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594]
[5]  
Deist TM, 2017, CLIN TRANSL RAD ONCO, V4, P24, DOI 10.1016/j.ctro.2016.12.004
[6]   The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM [J].
Edge, Stephen B. ;
Compton, Carolyn C. .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (06) :1471-1474
[7]   DataSHIELD: taking the analysis to the data, not the data to the analysis [J].
Gaye, Amadou ;
Marcon, Yannick ;
Isaeva, Julia ;
LaFlamme, Philippe ;
Turner, Andrew ;
Jones, Elinor M. ;
Minion, Joel ;
Boyd, Andrew W. ;
Newby, Christopher J. ;
Nuotio, Marja-Liisa ;
Wilson, Rebecca ;
Butters, Oliver ;
Murtagh, Barnaby ;
Demir, Ipek ;
Doiron, Dany ;
Giepmans, Lisette ;
Wallace, Susan E. ;
Budin-Ljosne, Isabelle ;
Schmidt, Carsten Oliver ;
Boffetta, Paolo ;
Boniol, Mathieu ;
Bota, Maria ;
Carter, Kim W. ;
deKlerk, Nick ;
Dibben, Chris ;
Francis, Richard W. ;
Hiekkalinna, Tero ;
Hveem, Kristian ;
Kvaloy, Kirsti ;
Millar, Sean ;
Perry, Ivan J. ;
Peters, Annette ;
Phillips, Catherine M. ;
Popham, Frank ;
Raab, Gillian ;
Reischl, Eva ;
Sheehan, Nuala ;
Waldenberger, Melanie ;
Perola, Markus ;
van den Heuvel, Edwin ;
Macleod, John ;
Knoppers, Bartha M. ;
Stolk, Ronald P. ;
Fortier, Isabel ;
Harris, Jennifer R. ;
Woffenbuttel, Bruce H. R. ;
Murtagh, Madeleine J. ;
Ferretti, Vincent ;
Burton, Paul R. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (06) :1929-1944
[8]   Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers [J].
Hripcsak, George ;
Duke, Jon D. ;
Shah, Nigam H. ;
Reich, Christian G. ;
Huser, Vojtech ;
Schuemie, Martijn J. ;
Suchard, Marc A. ;
Park, Rae Woong ;
Wong, Ian Chi Kei ;
Rijnbeek, Peter R. ;
van der Lei, Johan ;
Pratt, Nicole ;
Noren, G. Niklas ;
Li, Yu-Chuan ;
Stang, Paul E. ;
Madigan, David ;
Ryan, Patrick B. .
MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 :574-578
[9]   Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital - A real life proof of concept [J].
Jochems, Arthur ;
Deist, Timo M. ;
Van Soest, Johan ;
Eble, Michael ;
Bulens, Paul ;
Coucke, Philippe ;
Dries, Wim ;
Lambin, Philippe ;
Dekker, Andre .
RADIOTHERAPY AND ONCOLOGY, 2016, 121 (03) :459-467
[10]   WebDISCO: a web service for distributed cox model learning without patient-level data sharing [J].
Lu, Chia-Lun ;
Wang, Shuang ;
Ji, Zhanglong ;
Wu, Yuan ;
Xiong, Li ;
Jiang, Xiaoqian ;
Ohno-Machado, Lucila .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (06) :1212-1219