Recent Advances in Atomic-Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction

被引:147
作者
Liu, Huiling [1 ]
Zhu, Yating [2 ,3 ]
Ma, Jianmin [4 ,5 ]
Zhang, Zhicheng [2 ,3 ]
Hu, Wenping [2 ,3 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin Key Lab Adv Funct Porous Mat, Tianjin 300384, Peoples R China
[2] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
[5] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
atomically thin catalysts; CO2; reduction; electrocatalysis; CARBON-DIOXIDE REDUCTION; ELECTROCATALYTIC REDUCTION; THEORETICAL INSIGHTS; COPPER ELECTRODES; MOS2; NANOSHEETS; ELECTROREDUCTION; SELECTIVITY; SURFACE; SITES; CU;
D O I
10.1002/adfm.201910534
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of CO2 into value-added chemicals provides a promising approach to mitigate climate change caused by CO2 from excess consumption of fossil fuels. As the CO2 molecule is chemically inert and the reaction kinetics is sluggish, efficient electrocatalysts are thus highly required for promoting the conversion of CO2. With great efforts devoted to improving the catalytic performance, the development of electrocatalysts for CO2 reduction has gone from bulk metals with poor control to nanostructures with atomic precision. Nanostructured electrocatalysts with atomic precision are believed to be capable of combining the advantages of heterogeneous and homogenous catalysts. In this review, the recent advances in designing nanostructured electrocatalysts at the atomic level for boosting the catalytic performance toward CO2 reduction and revealing the structure-property relationship are summarized. The challenges and opportunities in the near future are also proposed for paving the development of electrocatalytic CO2 reduction.
引用
收藏
页数:21
相关论文
共 128 条
[21]   Fundamental Understanding of Water-Induced Mechanisms in Li-O2 Batteries: Recent Developments and Perspectives [J].
Dai, Alvin ;
Li, Qidong ;
Liu, Tongchao ;
Amine, Khalil ;
Lu, Jun .
ADVANCED MATERIALS, 2019, 31 (31)
[22]   Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide [J].
Dai, Lei ;
Qin, Qing ;
Wang, Pei ;
Zhao, Xiaojing ;
Hu, Chengyi ;
Liu, Pengxin ;
Qin, Ruixuan ;
Chen, Mei ;
Ou, Daohui ;
Xu, Chaofa ;
Mo, Shiguang ;
Wu, Binghui ;
Fu, Gang ;
Zhang, Peng ;
Zheng, Nanfeng .
SCIENCE ADVANCES, 2017, 3 (09)
[23]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[24]   ELECTROCHEMICAL AND SURFACE STUDIES OF CARBON-DIOXIDE REDUCTION TO METHANE AND ETHYLENE AT COPPER ELECTRODES IN AQUEOUS-SOLUTIONS [J].
DEWULF, DW ;
JIN, T ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (06) :1686-1691
[25]   Metal-Free Carbon Materials for CO2 Electrochemical Reduction [J].
Duan, Xiaochuan ;
Xu, Jiantie ;
Wei, Zengxi ;
Ma, Jianmin ;
Guo, Shaojun ;
Wang, Shuangyin ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED MATERIALS, 2017, 29 (41)
[26]   Continuous-flow electroreduction of carbon dioxide [J].
Endrodi, B. ;
Bencsik, G. ;
Darvas, F. ;
Jones, R. ;
Rajeshwar, K. ;
Janaky, C. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 62 :133-154
[27]   Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method [J].
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Sofer, Zdenek ;
Simek, Petr ;
Pumera, Martin .
ACS NANO, 2014, 8 (12) :12185-12198
[28]   Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111) [J].
Ertem, Mehmed Z. ;
Konezny, Steven J. ;
Araujo, C. Moyses ;
Batista, Victor S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (05) :745-748
[29]   Activation of Ni Particles into Single Ni-N Atoms for Efficient Electrochemical Reduction of CO2 [J].
Fan, Qun ;
Hou, Pengfei ;
Choi, Changhyeok ;
Wu, Tai-Sing ;
Hong, Song ;
Li, Fang ;
Soo, Yun-Liang ;
Kang, Peng ;
Jung, Yousung ;
Sun, Zhenyu .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[30]   Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion [J].
Fan, Xiaobin ;
Xu, Pengtao ;
Zhou, Dekai ;
Sun, Yifan ;
Li, Yuguang C. ;
Nguyen, Minh An T. ;
Terrones, Mauricio ;
Mallouk, Thomas E. .
NANO LETTERS, 2015, 15 (09) :5956-5960