A pair of equations in one prime, two prime squares and powers of 2

被引:3
作者
Hu, Liqun [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
关键词
circle method; Linnik problem; powers of 2; LINNIKS APPROXIMATION; ODD INTEGERS; SUM; REPRESENTATION;
D O I
10.4064/aa190121-10-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:191 / 200
页数:10
相关论文
共 18 条
[1]  
HeathBrown D.R., 2002, Asian J. Math, V6, P535, DOI [10.4310/AJM.2002.v6.n3.a7, DOI 10.4310/AJM.2002.V6.N3.A7]
[2]   On pairs of equations in one prime, two prime squares and powers of 2 [J].
Hu, Liqun ;
Yang, Li .
JOURNAL OF NUMBER THEORY, 2016, 160 :451-462
[3]   The number of powers of 2 in a representation of large odd integers [J].
Hu, Liqun ;
Yang, Li .
ACTA ARITHMETICA, 2011, 150 (02) :175-192
[4]  
Hua LK., 1938, Quart. J. Math. Oxford, V9, P68, DOI [10.1093/qmath/os-9.1.68, DOI 10.1093/QMATH/OS-9.1.68]
[5]   ON PAIRS OF GOLDBACH-LINNIK EQUATIONS [J].
Kong, Yafang ;
Liu, Zhixin .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (02) :199-208
[6]   Representation of odd integers as the sum of one prime, two squares of primes and powers of 2 [J].
Li, Hongze .
ACTA ARITHMETICA, 2007, 128 (03) :223-233
[7]  
Linnik Y.V., 1951, Trudy Nat. Inst. Steklov, V38, P152
[8]  
Linnik Y.V., 1953, Mat. Sbornik N.S, V32, P3
[9]   Squares of primes and powers of 2 [J].
Liu, JY ;
Liu, MC ;
Zhan, T .
MONATSHEFTE FUR MATHEMATIK, 1999, 128 (04) :283-313
[10]   Representation of odd integers as the sum of one prime, two squares of primes and powers of 2 [J].
Liu, T .
ACTA ARITHMETICA, 2004, 115 (02) :97-118