Decomposition of a Multiscale Entropy Tensor for Sleep Stage Identification in Preterm Infants

被引:9
作者
De Wel, Ofelie [1 ]
Lavanga, Mario [1 ]
Caicedo, Alexander [2 ]
Jansen, Katrien [3 ,4 ]
Naulaers, Gunnar [3 ]
Van Huffel, Sabine [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, B-3001 Leuven, Belgium
[2] Univ Rosario, Dept Appl Math & Comp Sci, Bogota 111711, Colombia
[3] Univ Hosp Leuven, Neonatal Intens Care Unit, Dept Dev & Regenerat, B-3000 Leuven, Belgium
[4] Univ Hosp Leuven, Child Neurol, Dept Dev & Regenerat, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
CPD; EEG; multiscale entropy; sleep staging; tensor decomposition; preterm neonate; EEG; STATE;
D O I
10.3390/e21100936
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional data and has proven successful in many applications. In this paper, a novel unsupervised algorithm to identify neonatal sleep stages based on the decomposition of a multiscale entropy tensor is presented. The method relies on the difference in electroencephalography(EEG) complexity between the neonatal sleep stages and is evaluated on a dataset of 97 EEG recordings. An average sensitivity, specificity, accuracy and area under the receiver operating characteristic curve of 0.80, 0.79, 0.79 and 0.87 was obtained if the rank of the tensor decomposition is selected based on the age of the infant.
引用
收藏
页数:15
相关论文
共 38 条
[21]   Absent Cyclicity on aEEG within the First 24h is Associated with Brain Damage in Preterm Infants [J].
Kidokoro, H. ;
Kubota, T. ;
Hayashi, N. ;
Hayakawa, M. ;
Takemoto, K. ;
Kato, Y. ;
Okumura, A. .
NEUROPEDIATRICS, 2010, 41 (06) :241-245
[22]   Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration [J].
Kobayashi, Hiromitsu ;
Kakihana, Wataru ;
Kimura, Tasuku .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2014, 11
[23]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[24]   Automated classification of neonatal sleep states using EEG [J].
Koolen, Ninah ;
Oberdorfer, Lisa ;
Rona, Zsofia ;
Giordano, Vito ;
Werther, Tobias ;
Klebermass-Schrehof, Katrin ;
Stevenson, Nathan ;
Vanhatalo, Sampsa .
CLINICAL NEUROPHYSIOLOGY, 2017, 128 (06) :1100-1108
[25]  
Lorenzo-Seva U., 2006, Methodology, V2, P57, DOI [DOI 10.1027/1614-1881.2.2.57, 10.1027/1614-2241.2.2.57, DOI 10.1027/1614-2241.2.2.57]
[26]  
Mariani S, 2015, IEEE ENG MED BIO, P7869, DOI 10.1109/EMBC.2015.7320216
[27]   Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy [J].
Osredkar, D ;
Toet, MC ;
van Rooij, LGM ;
van Huffelen, AC ;
Groenendaal, F ;
de Vries, LS .
PEDIATRICS, 2005, 115 (02) :327-332
[28]   Automated detection of neonate EEG sleep stages [J].
Piryatinska, Alexandra ;
Terdik, Gyorgy ;
Woyczynski, Wojbor A. ;
Loparo, Kenneth A. ;
Scher, Mark S. ;
Zlotnik, Anatoly .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 95 (01) :31-46
[29]   Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes [J].
Shellhaas, Renee A. ;
Burns, Joseph W. ;
Hassan, Fauziya ;
Carlson, Martha D. ;
Barks, John D. E. ;
Chervin, Ronald D. .
SLEEP, 2017, 40 (11)
[30]   Tensor Decomposition for Signal Processing and Machine Learning [J].
Sidiropoulos, Nicholas D. ;
De Lathauwer, Lieven ;
Fu, Xiao ;
Huang, Kejun ;
Papalexakis, Evangelos E. ;
Faloutsos, Christos .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (13) :3551-3582