Predictive Factors and Nomogram to Evaluate the Risk of Symptomatic Intracerebral Hemorrhage for Stroke Patients Receiving Thrombectomy

被引:9
|
作者
Qian, Yu [1 ,2 ,3 ]
Qian, Zheng-Ting [4 ]
Huang, Chun-Hong [3 ]
Wang, Hong-Ye [5 ]
Lu, Xuan [5 ]
Cao, Kan [1 ]
Sun, Jin-Yu [5 ]
Li, Qiao-Yu [1 ]
机构
[1] Jiangsu Univ, Dept Neurosurg, Affiliated Peoples Hosp, Zhenjiang, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Dept Neurosurg, Affiliated Zhenjiang Peoples Hosp 1, Zhenjiang, Jiangsu, Peoples R China
[3] Heyang Cty Hosp, Weinan, Peoples R China
[4] Nanjing Med Univ, Nanjing Hosp 1, Nanjing, Peoples R China
[5] Nanjing Med Univ, Affiliated Hosp 1, Clin Med Coll 1, Nanjing, Peoples R China
关键词
Acute ischemic stroke; Mechanical thrombectomy; Nomogram; Risk factor; Symptomatic intracerebral hemorrhage; ACUTE ISCHEMIC-STROKE; MECHANICAL THROMBECTOMY; ENDOVASCULAR TREATMENT; SCALE SCORE; OCCLUSION; POSTERIOR; OUTCOMES;
D O I
10.1016/j.wneu.2020.08.181
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND: Symptomatic intracerebral hemorrhage (sICH) is a severe complication of mechanical thrombectomy (MT). This study is to identify predictive factors and create a nomogram to evaluate the risk of sICH after MT treatment. METHODS: We conducted a retrospective analysis on 127 consecutive stroke patients treated by MT therapy. We evaluated multiple predictive factors for the incidence of sICH using univariate and multivariate logistic regressions. Based on the identified and other possible factors, a nomogram was constructed to predict the risk of sICH. RESULTS: We identified several predictive factors for sICH in the univariate analysis, including thrombectomy maneuvers >3 (odds ratio [OR], 4.42; 95% confidence interval [CI], 1.25-15.6; P = 0.0211), admission blood glucose (OR, 1.29; 95% CI, 1.13-1.48; P = 0.0002), diabetes mellitus (OR, 4.44; 95% CI, 1.64-12.0; P = 0.0033), and admission National Institutes of Health Stroke Scale (NIHSS) score (OR, 1.05; 95% CI, 1.01-1.10; P = 0.0263). The multivariate analysis showed that admission NIHSS score and blood glucose significantly affected the prognosis. Moreover, the proposed nomogram showed reliable identification ability with an area under the curve of 0.82 (95% CI, 0.71-0.93), specificity of 0.745, sensitivity of 0.762, accuracy of 0.748, and negative predictive value of 0.941. CONCLUSIONS: Our study identified the admission NIHSS score and admission blood glucose level as predictive factors for sICH. Moreover, the proposed nomogram based on possible factors showed reliable predictive performance in evaluating the risk of sICH.
引用
收藏
页码:E466 / E474
页数:9
相关论文
共 50 条
  • [31] A New Nomogram for Predicting the Risk of Intracranial Hemorrhage in Acute Ischemic Stroke Patients After Intravenous Thrombolysis
    Weng, Ze-An
    Huang, Xiao-Xiong
    Deng, Die
    Yang, Zhen-Guo
    Li, Shu-Yuan
    Zang, Jian-Kun
    Li, Yu-Feng
    Liu, Yan-Fang
    Wu, You-Sheng
    Zhang, Tian-Yuan
    Su, Xuan-Lin
    Lu, Dan
    Xu, An-Ding
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [32] Contrast Extravasation versus Hemorrhage after Thrombectomy in Patients with Acute Stroke
    Yedavalli, Vivek
    Sammet, Steffen
    JOURNAL OF NEUROIMAGING, 2017, 27 (06) : 570 - 576
  • [33] Comparisons of Risk Factors for Intracerebral Hemorrhage versus Ischemic Stroke in Chinese Patients
    Tsai, Chung-Fen
    Jeng, Jiann-Shing
    Anderson, Niall
    Sudlow, Cathie L. M.
    NEUROEPIDEMIOLOGY, 2017, 48 (1-2) : 72 - 78
  • [34] Predictive Nomogram for Unfavorable Outcome of Spontaneous Intracerebral Hemorrhage
    Liu, Mingxing
    Wang, Zijun
    Meng, Xiankun
    Zhou, Yong
    Hou, Xiaoqun
    Li, Luo
    Li, Tong
    Chen, Feng
    Xu, Zhiming
    Li, Shengli
    Wang, Weimin
    WORLD NEUROSURGERY, 2022, 164 : E1111 - E1122
  • [35] Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model
    Wang, Feng
    Huang, Yuanhanqing
    Xia, Yong
    Zhang, Wei
    Fang, Kun
    Zhou, Xiaoyu
    Yu, Xiaofei
    Cheng, Xin
    Li, Gang
    Wang, Xiaoping
    Luo, Guojun
    Wu, Danhong
    Liu, Xueyuan
    Campbell, Bruce C. V.
    Dong, Qiang
    Zhao, Yuwu
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2020, 13
  • [36] Risk factors for intracranial hemorrhage after mechanical thrombectomy: a systematic review and meta-analysis
    Hao, Zilong
    Yang, Chunsong
    Xiang, Lingbao
    Wu, Bo
    Liu, Ming
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2019, 19 (10) : 927 - 935
  • [37] Intracerebral hemorrhage risk after adjunct intraarterial thrombolysis in thrombectomy-treated acute ischemic stroke
    Qureshi, Adnan I.
    Huang, Yilun
    Bhatti, Ibrahim A.
    Gomez, Camilo R.
    Hanley, Daniel F.
    Ford, Daniel E.
    Hassan, Ameer E.
    Nguyen, Thanh N.
    Spiotta, Alejandro M.
    Veznedaroglu, Erol
    Budzik, Ronald F.
    Gupta, Rishi
    Nogueira, Raul G.
    Krajina, Antonin
    Bartolini, Bruno
    English, Joey
    Baxter, Blaise
    Liebeskind, David S.
    JOURNAL OF NEUROIMAGING, 2024, 34 (06) : 773 - 780
  • [38] Risk of Symptomatic Intracerebral Hemorrhage in Patients Treated with Intra-Arterial Thrombolysis
    Singer, O. C.
    Berkefeld, J.
    Lorenz, M. W.
    Fiehler, J.
    Albers, G. W.
    Lansberg, M. G.
    Kastrup, A.
    Rovira, A.
    Liebeskind, D. S.
    Gass, A.
    Rosso, C.
    Derex, L.
    Kim, J. S.
    Neumann-Haefelin, T.
    CEREBROVASCULAR DISEASES, 2009, 27 (04) : 368 - 374
  • [39] Inter-facility transfer for patients with acute large vessel occlusion stroke receiving mechanical thrombectomy
    Scheving, William L.
    Froehler, Michael
    Hart, Kimberly
    McNaughton, Candace D.
    Ward, Michael J.
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2021, 39 : 132 - 136
  • [40] Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Chinese Ischemic Stroke Patients The ASIAN Score
    Zhang, Xiaohao
    Xie, Yi
    Wang, Huaiming
    Yang, Dong
    Jiang, Teng
    Yuan, Kang
    Gong, Pengyu
    Xu, Pengfei
    Li, Yunzi
    Chen, Jingjing
    Wu, Min
    Sheng, Lei
    Liu, Dezhi
    Liu, Xinfeng
    Xu, Gelin
    STROKE, 2020, 51 (09) : 2690 - 2696