Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

被引:43
作者
Karnuta, Jaret M. [1 ]
Luu, Bryan C. [1 ,3 ]
Roth, Alexander L. [1 ]
Haeberle, Heather S. [1 ,2 ]
Chen, Antonia F. [4 ]
Iorio, Richard [4 ]
Schaffer, Jonathan L. [1 ]
Mont, Michael A. [5 ]
Patterson, Brendan M. [1 ]
Krebs, Viktor E. [1 ]
Ramkumar, Prem N. [1 ,4 ]
机构
[1] Cleveland Clin, Orthopaed Machine Learning Lab, Cleveland, OH USA
[2] Hosp Special Surg, Dept Orthopaed Surg, New York, NY USA
[3] Baylor Coll Med, Dept Orthopaed Surg, Houston, TX USA
[4] Brigham & Womens Hosp, Dept Orthopaed Surg, Boston, MA USA
[5] Northwell Hlth, Dept Orthopaed Surg, Lenox Hill Hosp, New York, NY USA
关键词
total knee arthroplasty; revision arthroplasty; machine learning; implant identification; artificial intelligence; TOTAL JOINT ARTHROPLASTY; HIP-ARTHROPLASTY; PROJECTIONS;
D O I
10.1016/j.arth.2020.10.021
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deeplearning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods: We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anteriorposterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results: The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep- learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions: A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty. (C)y 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:935 / 940
页数:6
相关论文
共 16 条
[1]   Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network [J].
Borjali, Alireza ;
Chen, Antonia F. ;
Muratoglu, Orhun K. ;
Morid, Mohammad A. ;
Varadarajan, Kartik M. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2020, 38 (07) :1465-1471
[2]   Clinical Characteristics and Outcomes of Medicare Patients Undergoing Total Hip Arthroplasty, 1991-2008 [J].
Cram, Peter ;
Lu, Xin ;
Kaboli, Peter J. ;
Vaughan-Sarrazin, Mary S. ;
Cai, Xueya ;
Wolf, Brian R. ;
Li, Yue .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (15) :1560-1567
[3]  
Desai P, IMPLANT IDENTIFIER
[4]   Is Changing Hospitals for Revision Total Joint Arthroplasty Associated With More Complications? [J].
Dy, Christopher J. ;
Bozic, Kevin J. ;
Padgett, Douglas E. ;
Pan, Ting Jung ;
Marx, Robert G. ;
Lyman, Stephen .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2014, 472 (07) :2006-2015
[5]  
Food and Drug Administration, 2014, UN DEV ID SYST UDI P
[6]  
Food and Drug Administration, 2013, FED REG, V78, P58785
[7]  
JONES P R, 1992, Seminars in Orthopaedics, V7, P54
[8]   Machine learning ? based identi fi cation of hip arthroplasty designs [J].
Kang, Yang-Jae ;
Yoo, Jun-Il ;
Cha, Yong-Han ;
Park, Chan H. ;
Kim, Jung-Taek .
JOURNAL OF ORTHOPAEDIC TRANSLATION, 2020, 21 :13-17
[9]   Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 [J].
Kurtz, Steven ;
Ong, Kevin ;
Lau, Edmund ;
Mowat, Fionna ;
Halpern, Michael .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2007, 89A (04) :780-785
[10]   Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs [J].
Milea, D. ;
Najjar, R. P. ;
Zhubo, J. ;
Ting, D. ;
Vasseneix, C. ;
Xu, X. ;
Fard, M. Aghsaei ;
Fonseca, P. ;
Vanikieti, K. ;
Lagreze, W. A. ;
La Morgia, C. ;
Cheung, C. Y. ;
Hamann, S. ;
Chiquet, C. ;
Sanda, N. ;
Yang, H. ;
Mejico, L. J. ;
Rougier, M-B ;
Kho, R. ;
Thi Ha Chau, T. ;
Singhal, S. ;
Gohier, P. ;
Clermont-Vignal, C. ;
Cheng, C-Y ;
Jonas, J. B. ;
Yu-Wai-Man, P. ;
Fraser, C. L. ;
Chen, J. J. ;
Ambika, S. ;
Miller, N. R. ;
Liu, Y. ;
Newman, N. J. ;
Wong, T. Y. ;
Biousse, V .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1687-1695