Hydrogen storage on cross stacking nanocones

被引:10
作者
El-Barbary, A. A. [1 ,2 ]
机构
[1] Ain Shams Univ, Phys Dept, Fac Educ, Cairo, Egypt
[2] Jazan Univ, Phys Dept, Fac Sci, Jazan, Saudi Arabia
关键词
Hydrogen storage; Hydrogenation mechanism; Nanocones; DFT; Cross stacking; SINGLE-WALLED CARBON; NANOTUBE; ENERGY; PALLADIUM; PHYSISORPTION; INTERMEDIATE; ADSORPTION; DFT;
D O I
10.1016/j.ijhydene.2019.05.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen is one of promising energy sources with virtually non-polluting. In this paper, the hydrogenation mechanism and hydrogen storage weight percentage of new forms of CNCs, BNNCs and SiCNCs with an apex angle of 112.9 degrees are investigated for first time using density functional theory (DFT) and applying B3LYP level at 6-31 g(d,p) basis. The calculations underscore that for all nanocones; CNCs, BNNCs and SiCNCs the convex surface is always more energetic favorite for hydrogenation comparing with the concave surface of nanocones. Also, the hydrogen storage weight percentage is always enhanced via cross stacking nanocones. Noticeably, it is found that the electron density is widely distributed up the next neighbor atoms of pentagon ring via cross stacking, however for single nanocones is mostly concentrated on the atoms of the conical part (pentagon ring). Finally, the results show that the best candidate nanocone for hydrogen storage is the cross stacking nanocones. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20099 / 20109
页数:11
相关论文
共 62 条
[51]   Hydrogen uptake of manganese oxide-multiwalled carbon nanotube composites [J].
Rather, Sami Ullah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (01) :325-331
[52]   Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study [J].
Rivera Mananghaya, Michael ;
Nonato Santos, Gil ;
Yu, Dennis ;
Stampfl, Catherine .
SCIENTIFIC REPORTS, 2017, 7
[53]   Development of a fast-response/high-sensitivity double wall carbon nanotube nanostructured hydrogen sensor [J].
Rumiche, F. ;
Wang, H. H. ;
Indacochea, J. E. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 163 (01) :97-106
[54]   Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics [J].
Rungnim, Chompoonut ;
Faungnawakij, Kajornsak ;
Sano, Noriaki ;
Kungwan, Nawee ;
Namuangruk, Supawadee .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (52) :23336-23345
[55]   Growth and scanning probe microscopy of buckytubes and buckycones [J].
Sattler, K .
SURFACE REVIEW AND LETTERS, 1996, 3 (01) :813-818
[56]  
Schlapbach L, 2001, INT J HYDROGEN ENERG, V414, P353
[57]   Potassium decorated γ-graphyne as hydrogen storage medium: Structural and electronic properties [J].
Shams, Masoumeh ;
Reisi-Vanani, Add .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) :4907-4918
[58]   Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage [J].
Shiraz, Hamid Ghorbani ;
Shiraz, Mohadeseh Ghorbani .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) :11528-11533
[59]   Fullerene attachment to sharp-angle nanocones mediated by covalent oxygen bridging [J].
Suarez-Martinez, Irene ;
Mittal, Jagjiwan ;
Allouche, Hatem ;
Pacheco, Marquidia ;
Monthioux, Marc ;
Razafinimanana, Manitra ;
Ewels, Chris P. .
CARBON, 2013, 54 :149-154
[60]   Nanostructure and Hydrogen Spillover of Bridged Metal-Organic Frameworks [J].
Tsao, Cheng-Si ;
Yu, Ming-Sheng ;
Wang, Cheng-Yu ;
Liao, Pin-Yen ;
Chen, Hsin-Lung ;
Jeng, U-Ser ;
Tzeng, Yi-Ren ;
Chung, Tsui-Yun ;
Wut, Hsiu-Chu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1404-+