Computational Aspects of Single-Molecule Kinetics for Coupled Catalytic Cycles: A Spectral Analysis

被引:4
作者
An, Suming [1 ]
Patel, Prajay [2 ]
Liu, Cong [2 ]
Skodje, Rex T. [1 ]
机构
[1] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60639 USA
基金
美国国家科学基金会;
关键词
MICHAELIS-MENTEN EQUATION; SUBSTRATE CONCENTRATION; STRUCTURE SENSITIVITY; STATISTICAL KINETICS; ENZYME; HYDROGENATION; DECOMPOSITION; SPECTROSCOPY; MECHANISMS; PATHWAYS;
D O I
10.1021/acs.jpca.2c02153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysis from single active sites is analyzed using methods developed from single-molecule kinetics. Using a stochastic Markov-state description, the observable properties of general catalytic networks of reactions are expressed using an eigenvalue decomposition of the transition matrix for the Markov process. By the use of a sensitivity analysis, the necessary eigenvalues and eigenvectors are related to the energies of controlling barriers and wells located along the reaction routes. A generalization of the energetic span theory allows the eigenvalues to be computed from several activation energies corresponding to distinct barrier-well pairings. The formalism is demonstrated for model problems and for a physically realistic mechanism for an alkene hydrogenation reaction on a single-atom catalyst. The spectral analysis permits a hierarchy of timescales to be identified from the single-molecule signal, which correspond to specific relaxation modes in the network.
引用
收藏
页码:3783 / 3796
页数:14
相关论文
共 50 条
[21]   Interpretation of Single-Molecule Force Experiments on Proteins Using Normal Mode Analysis [J].
Bauer, Jacob ;
Zoldak, Gabriel .
NANOMATERIALS, 2021, 11 (11)
[22]   Control and imaging of single-molecule spectral dynamics using a nano-electrode [J].
Gerhardt, I. ;
Wrigge, G. ;
Sandoghdar, V. .
MOLECULAR PHYSICS, 2009, 107 (18) :1975-1979
[23]   Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy [J].
Zoldak, Gabriel ;
Stigler, Johannes ;
Pelz, Benjamin ;
Li, Hongbin ;
Rief, Matthias .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (45) :18156-18161
[24]   Single-Molecule Kinetics Reveals a Hidden Surface Reaction Intermediate in Single-Nanoparticle Catalysis [J].
Shen, Hao ;
Zhou, Xiaochun ;
Zou, Ningmu ;
Chen, Peng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46) :26902-26911
[25]   A Label-Free Untethered Approach to Single-Molecule Protein Binding Kinetics [J].
Al Balushi, Ahmed A. ;
Gordon, Reuven .
NANO LETTERS, 2014, 14 (10) :5787-5791
[26]   AFM-Raman Imaging and Raman Spectral Fluctuation Analysis of Single-Molecule Interfacial Electron Transfer Dynamics [J].
Lu, H. Peter .
XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 :121-121
[27]   Deep-LASI, single-molecule data analysis software [J].
Asadiatouei, Pooyeh ;
Salem, Clemens-Baessem ;
Wanninger, Simon ;
Ploetz, Evelyn ;
Lamb, Don C. .
BIOPHYSICAL JOURNAL, 2024, 123 (17) :2682-2695
[28]   Likelihood functions for the analysis of single-molecule binned photon sequences [J].
Gopich, Irina V. .
CHEMICAL PHYSICS, 2012, 396 :53-60
[29]   Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing [J].
Peters, S. M. E. ;
Verheijen, M. A. ;
Prins, M. W. J. ;
Zijlstra, P. .
NANOTECHNOLOGY, 2016, 27 (02)
[30]   Generic Schemes for Single-Molecule Kinetics. 3: Self-Consistent Pathway Solutions for Nonrenewal Processes [J].
Piephoff, D. Evan ;
Cao, Jianshu .
JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (17) :4601-4610